Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là trọng tâm ΔABC
⇒ VT = 6MG
VP = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)
VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)
Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)
VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)
VP = 6 MI
Khi VT = VP thì MG = MI
⇒ M nằm trên đường trung trực của IG
Tập hợp các điểm M : "Đường trung trực của IG"
trên AC lấy điểm I sao cho \(\overrightarrow{IA}=2\overrightarrow{IC}\)
KHI ĐÓ: \(|\overrightarrow{-MI}+\overrightarrow{MB}|=|\overrightarrow{MB}+\overrightarrow{MC}|\)
chọn điểm K trung điểm BC
\(|\overrightarrow{IB}|=|2\overrightarrow{MK}+\overrightarrow{KB}+\overrightarrow{KC}|\rightarrow IB=2MK\)
vậy M thuộc tập hợp đường tròn đường kình IB tâm K