K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

A B C D E F

a) xét tam giác ABE và tam giác ACF có:

góc BAE=góc CAF (AD là phân giác góc BAC)

góc AEB=góc AFC=90 độ

\(\Rightarrow\Delta ABE\infty\Delta ACF\left(g.g\right)\)

xét tam giác BDE và tam giác CDF có:

góc CDF= góc BDE(đối đỉnh)

góc BED= góc CFD=90 độ

\(\Rightarrow\Delta BDE\infty\Delta CDF\left(g.g\right)\)

b) ta có: AD là phân giác góc BAC nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\left(1\right)\)

\(\Delta ABE\infty\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (2)

\(\Delta BDE\infty\Delta CDF\Rightarrow\dfrac{BD}{CD}=\dfrac{DE}{DF}\left(3\right)\)

từ (1),(2),(3) \(\Rightarrow\dfrac{AE}{AF}=\dfrac{DE}{DF}\Rightarrow AE\cdot DF=DE\cdot AF\)

29 tháng 3 2016

a) + Xét 2 tam giác ABE và tam giác ACF có

     Góc AEB = góc AFC ( = 90 )

     Góc BAE = góc CAF

\(\Rightarrow\) ​tam giác ABE đồng dạng vs tam giác ACF ( g.g )

     + Xét 2 tam giác BDE và tam giác CDF có

      Góc BED = góc DFC

      Do BE vuông góc với AD, Cf vuông góc với AD

      \(\Rightarrow\) BE // CF

     \(\Rightarrow\) góc EBD = góc DCF ( 2 góc ở vị trí so le trong )

\(\Rightarrow\) tam giác BDE đồng dạng với tam giác CDF ( g.g )

b) Do tam giác ABE đồng dạng vs tam giác ACF

\(\Rightarrow\frac{EA}{FA}=\frac{BE}{CF}\)                (1)

     Do  tam giác BDE đồng dạng với tam giác CDF

\(\Rightarrow\frac{BE}{CF}=\frac{DE}{DF}\)                (2)

Từ (1) và (2) \(\Rightarrow\) \(\Rightarrow\) \(\frac{EA}{FA}=\frac{DE}{DF}\) \(\left(=\frac{BE}{CF}\right)\) \(\Leftrightarrow\)  \(AE.DF=FA.DE\)

29 tháng 3 2016

mình chưa học cấp 2 

27 tháng 3 2016

giờ này mà bn vẫn hok cái này à?

27 tháng 3 2016

ukm, mình là người học chậm, mong bạn thông cảm

25 tháng 4 2017
i don t no
26 tháng 7 2018

I DON`T NO ,SORRY

a: Sửa đề: tam giác ABE

Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE=góc CAF

=>ΔABE đồng dạng với ΔACF

Xét ΔBDE vuông tại E và ΔCDF vuông tại F có

góc BDE=góc CDF
=>ΔBDE đồng dạng với ΔCDF

b: AE/AF=AB/AC=BE/CF

BE/CF=BD/CD=DE/DF

=>AE/AF=DE/DF

=>AE*DF=AF*DE

18 tháng 3 2016

BT 1:

a/ Xét tg ABE và tg ACF có

^BAE=^CAF (AD là phân giác ^BAC)

^AEB=^AFC=90

=> tg ABE đồng dạng với tg ACF => \(\frac{AE}{AF}=\frac{BE}{CF}\) (1)

b/ Xét tg BDE và tg CDF có

^BDE=^CDF (góc đối đỉnh)

^BED=^CFD=90

=> tg BDE đồng dạng với tg CDF => \(\frac{DE}{DF}=\frac{BE}{CF}\) (2)

Từ (1) và (2) => \(\frac{AE}{AF}=\frac{DE}{DF}\Rightarrow AE.DE=AF.DE\)

BT 2:

a/ HI vg AB, AK vg AB => HI//AK ( cùng vg với AB)

cm tương tự cũng có AI//KH (cùng vg với AC)

=> AIHK là hbh (có các cặp cạnh dối // với nhau từng đôi một)

^BAC=90

=> AIHK là hcn

b/

+ Ta có ^ACB=^AHK (cùng phụ với ^HAC) (1)

+ Xét 2 tg vuông IAK và tg vuông HKA có

IA=HK (AIHK là hcn), AK chung => tg IAK = tg HKA (hai tg vuông có các cạnh góc vuông từng đội một băng nhau)

=> ^AIK=^AHK (2)

Từ (1) và (2) => ^AIK=^ACB

2 tháng 4 2017

Còn câu c sao ạ