Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=15^2+20^2=625\)
=>\(BC=\sqrt{625}=25\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)
=>\(\dfrac{BD}{CD}=\dfrac{3}{4}\)
=>\(\dfrac{CD}{BD}=\dfrac{4}{3}\)
=>\(\dfrac{CD+BD}{BD}=\dfrac{4+3}{3}\)
=>\(\dfrac{BC}{BD}=\dfrac{7}{3}\)
=>\(BD=\dfrac{3}{7}BC\)
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}\)
b: Vì I là trung điểm của BC
nên \(S_{ABI}=\dfrac{1}{2}\cdot S_{ABC}\)
=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{3}{7}:\dfrac{1}{2}=\dfrac{6}{7}\)
c: \(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot140=60\left(cm^2\right)\)
\(S_{ABI}=\dfrac{7}{6}\cdot S_{ABD}=\dfrac{7}{6}\cdot60=70\left(cm^2\right)\)
ta có: \(S_{ABD}+S_{AID}=S_{ABI}\)
=>\(S_{AID}+60=70\)
=>\(S_{AID}=10\left(cm^2\right)\)
a/ Theo tính chất đường phân giác trong tam giác: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy ta có
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{m}{n}\)
Hai tam giác ABD và tam giác ACD có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{BD}{CD}=\frac{m}{n}\)
b/ Ta có
\(\frac{S_{\Delta ABD}}{S_{\Delta ACD}}=\frac{m}{n}\Rightarrow\frac{S_{\Delta ABD}}{m}=\frac{S_{\Delta ACD}}{n}=\frac{S_{\Delta ABD}+S_{\Delta ACD}}{m+n}=\frac{S_{\Delta ABC}}{m+n}=\frac{s}{m+n}\)
\(\Rightarrow S_{\Delta ABD}=\frac{sm}{m+n}\)
Xét hai tam giác ABM và tam giác ABC có chung đường cao hạ từ A xuống BC nên
\(\frac{S_{\Delta ABM}}{S_{\Delta ABC}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{\Delta ABM}=\frac{S_{\Delta ABC}}{2}=\frac{s}{2}\)
Mà \(S_{\Delta ADM}=S_{\Delta ABM}-S_{\Delta ABD}=\frac{s}{2}-\frac{sm}{m+n}\)
https://hoc24.vn/cau-hoi/.4762222558882
-Bạn chỉ cần thay đổi một chút thôi.
a) xét△HBA và △ABC có:
góc BAH= góc BHA (=90 độ)
góc B chung
⇒△HBA∼△ABC (g.g)
b) áp dụng định lí pytago vào △ABC vuông tại A
AB2+AC2=BC2
⇔162+122=BC2
⇔256+144=BC2
⇔√400=20=BC(cm)
vậy BC= 20 cm
vì△HBA∼△ABC(cmt)
ta có tỉ lệ
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)
⇒\(AH=\dfrac{12\cdot16}{20}=\dfrac{48}{5}=9.6\left(cm\right)\)
⇒AH = 9,6 cm
áp dụng tính chất đường phân giácAD trong tam giác
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)⇒\(\dfrac{12}{16}=\dfrac{BD}{DC}\)⇒\(\dfrac{DC}{16}=\dfrac{BD}{12}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{16}=\dfrac{BD}{12}=\dfrac{DC+BD}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)
\(\dfrac{BD}{12}=\dfrac{5}{7}\)⇒\(BD=\dfrac{60}{7}\left(cm\right)\)
c) \(DC=BC-BD=20-\dfrac{60}{7}=\dfrac{80}{7}\)
hs tự làm
A B C D H m n
Gọi tỉ số diện tích tam giác ABD và diện tích tam giác ACD bằng \(\frac{m}{n}\)
Kẻ \(AH\perp BC\)
Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)và \(S_{ADC}=\frac{1}{2}AH.DC\)
\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)
Mặt khác: AD là đường phân giác của tam giác ABC
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}=\frac{m}{n}\)
Gọi DM và DN lần lượt là đường cao của tam giác ADB và tam giác ACD
Xét tam giác ADB và tam giác ACD có :
góc BAD=góc DAC (gt)
AD chung
góc AMD = góc AND ( = 90 độ )
=> Tam giác ADB = tam giác ACD ( ch-gn)
=> DM=DN
TA có :
Stam giác ABD/Stam giác ADC
=(1/2.DM.AB)/(1/2.DN.AC)
=(1/2.DM.AB)/(1/2.DM.AC)=AB/AC=m/n (đpcm)
Như vầy cũng được mà trên mạng nó có mà sao bạn không chịu tìm nhỉ ???
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/5
=>S ABD/S ACD=3/5
b: S ABD/S ACD=3/5
=>S ABD/3=S ACD/5=(S ABD+S ACD)/(3+5)=60/8=7,5
=>S ABD=22,5cm2