Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác abc o là điểm nằm trong tam giác, các tia AO,BO,CO cắt cạnh BC,CA,AB lần lượt tai D,E,F
cho tam giác nhọn abc o thuộc tam giác có OA,OB,OC cắt BC, CA, AB tại D,E,F. CMR AO/AD+OB/BE+OC/CF=2
A B C E F K O
Xét Δ ABO và Δ ABK có chung đường cao hạ từ B xuống AK
=>\(\dfrac{S_{ABO}}{S_{ABK}}=\dfrac{AO}{AK}\)
Xét Δ ACO và Δ ACKcó chung đường cao hạ từ C xuống AK
=>\(\dfrac{S_{ACO}}{S_{ACK}}=\dfrac{AO}{AK}\)
\(\Rightarrow\dfrac{AO}{AK}=\dfrac{S_{ABO}}{S_{ABK}}=\dfrac{S_{ACO}}{S_{ACK}}=\dfrac{S_{ABO}+S_{ACO}}{S_{ABK}+S_{ACK}}\)\(=\dfrac{S_{ABO}+S_{ACO}}{S_{ABC}}\)(1)
( vì \(S_{ABK}+S_{ACK}=S_{ABC}\))
c/m tương tự như trên t sẽ có:
\(\dfrac{BO}{BE}=\dfrac{S_{BOA}+S_{BOC}}{S_{BEA}+S_{BEC}}=\dfrac{S_{BOA}+S_{BOC}}{S_{ABC}}\left(2\right)\)
\(\dfrac{CO}{CF}=\dfrac{S_{COA}+S_{COB}}{S_{CFA}+S_{CFB}}=\dfrac{S_{COA}+S_{COB}}{S_{ABC}}\left(3\right)\)
Cộng tất cả vế (1) , (2) , (3) ta có :
\(\dfrac{OA}{AK}+\dfrac{OB}{BE}+\dfrac{OC}{CF}=\dfrac{2\left(S_{ABO}+S_{ACO}+S_{BOC}\right)}{S_{ABC}}=2\) ( đpcm)
( vì \(S_{ABO}+S_{ACO}+S_{BOC}=S_{ABC}\))
Gọi T là giao điểm của DE và AB. Qua F kẻ đường thẳng song song với BC cắt DA, DT lần lượt tại U, V.
Áp dụng định lý Menelaus cho tam giác ABC, cát tuyến TED, ta có:
\(\dfrac{TA}{TB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Áp dụng định lý Ceva cho tam giác ABC với AD, BE, CF đồng quy tại O, ta có:
\(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Từ đó suy ra \(\dfrac{TA}{TB}=\dfrac{FA}{FB}\Leftrightarrow\dfrac{TA+FA}{TB}=\dfrac{2FA}{TB}\) \(\Leftrightarrow\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
Mà theo định lý Thales:
\(\dfrac{TF}{TB}=\dfrac{FV}{BD}\) và \(\dfrac{AF}{AB}=\dfrac{FU}{BD}\)
Từ đó suy ra \(\dfrac{FV}{BD}=\dfrac{2FU}{BD}\) \(\Rightarrow FV=2FU\) hay U là trung điểm FV.
Áp dụng bổ đề hình thang, ta dễ dàng suy ra O là trung điểm MN hay \(OM=ON\) (đpcm).
(Bổ đề hình thang phát biểu như sau: Trung điểm của 2 cạnh đáy, giao điểm của 2 đường chéo và giao điểm của 2 đường thẳng chứa 2 cạnh bên của một hình thang thì thẳng hàng. Chứng minh khá dễ, mình nhường lại cho bạn tự tìm hiểu nhé.)
Chỗ biến đổi này mình làm lại nhé:
Cần chứng minh: \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
\(\Leftrightarrow TF.AB=2AF.TB\)
\(\Leftrightarrow\left(TA+AF\right)\left(AF+BF\right)=2AF\left(TA+AF+BF\right)\)
\(\Leftrightarrow TA.AF+TA.BF+AF^2+AF.BF=2TA.AF+2AF^2+2AF.BF\)
\(\Leftrightarrow TA.AF+AF^2+AF.FB=TA.BF\)
\(\Leftrightarrow AF\left(TA+AF+FB\right)=TA.BF\)
\(\Leftrightarrow AF.TB=TA.BF\)
\(\Leftrightarrow\dfrac{TA}{TB}=\dfrac{FA}{FB}\) (luôn đúng)
Vậy \(\dfrac{TF}{TB}=\dfrac{2AF}{AB}\)
A B C O D E F
\(\frac{OA}{AD}=\frac{S_{AOB}}{S_{ABD}}=\frac{S_{AOC}}{S_{ACD}}=\frac{S_{AOB}+S_{AOC}}{SABC}\)
Tương tự rồi cộng lại ta đc
\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=\frac{2\left(S_{AOB}+S_{BOC}+S_{COA}\right)}{S_{ABC}}=2\)
Bài Giải
Đặt SBOC=x2,SAOC=y2,SAOB=z2 ⇒SABC=SBOC+SAOC+SAOB=x2+y2+z2
Ta có : ADOD =SABCSBOC =AO+ODOD =1+AOOD =x2+y2+z2x2 =1+y2+z2x2
⇒AOOD =y2+z2x2 ⇒√AOOD =√y2+z2x2 =√y2+z2x
Tương tự ta có √OBOE =√x2+z2y2 =√x2+z2y ;√OCOF =√x2+y2z2 =√x2+y2z
⇒P=√x2+y2z +√y2+z2x +√x2+z2y ≥x+y√2z +y+z√2x +x+z√2y
=1√2 [(xy +yx )+(yz +zy )+(xz +zx )]≥1√2 (2+2+2)=3√2
Dấu "=" xảy ra khi x=y=z⇒SBOC=SAOC=SAOB=13 SABC
⇒ODOA =OEOB =OFOC =13 ⇒O là trọng tâm của tam giác ABC
Vậy MinP=3√2 khi O là trọng tâm của tam giác ABC