Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C I H D K E F
a) Ta thấy \(\widehat{BAD}=\widehat{CAD}\Rightarrow\widebat{BD}=\widebat{DC}\)
\(\Rightarrow\widehat{HAI}=\widehat{CKD}\) (Hai góc nội tiếp chắn hai cùng bằng nhau)
Do DK là đường kính nên \(\widehat{KCD}=90^o\)
Suy ra \(\Delta AHI\sim\Delta KCD\left(g-g\right)\)
b) Ta thấy \(\widehat{BID}=\widehat{ABI}+\widehat{BAD}\) (Tính chất góc ngoài)
Mà \(\widehat{ABI}=\widehat{IBC};\widehat{BAD}=\widehat{DBC}\) nên \(\widehat{BID}=\widehat{IBC}+\widehat{CBD}=\widehat{IBD}\)
Suy ra DB = DI
Lại có \(\widehat{BAD}=\widehat{CAD}\Rightarrow BD=DC\)
Nên DI = DB = DC
c) Kéo dài OI, cắt đường tròn (O) tại hai điểm E và F.
Ta có ngay \(\Delta EAI\sim\Delta DFI\left(g-g\right)\Rightarrow\frac{IA}{IF}=\frac{IE}{ID}\Rightarrow IA.ID=IE.IF\)
\(=\left(OE-OI\right)\left(OI+OF\right)=R^2-d^2\)
d) Ta có : \(\Delta AHI\sim\Delta KCD\left(cma\right)\Rightarrow\frac{IA}{KD}=\frac{HI}{CD}\Rightarrow IA.CD=KD.HI\)
\(\Rightarrow IA.ID=2OD.HI=2Rr\)
Từ câu c suy ra \(2Rr=R^2-d^2\Leftrightarrow d^2=R^2-2Rr\)
a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.
Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)
Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)
Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)
Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)
b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)
Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\). \(\Delta O_2OO_1\)vuông cân tại \(O_2\)
Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)
.Vậy diện tích \(\Delta O_2OO_1\) là\(\frac{5R^2}{8}\)
Đề bài cứ sai sai ???