K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp

==> 4 điểm B,E,F,C cùng thuộc một đường tròn.

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại Na) chứng minh tứ giác BMHD, BMEC nội tiếpb) chứng minh MC là tia phân giác của góc EMDc) chứng minh H và N đối xứng với nhau qua BCd) chứng minh OC vuông góc BE2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f...
Đọc tiếp

GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU

1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N

a) chứng minh tứ giác BMHD, BMEC nội tiếp

b) chứng minh MC là tia phân giác của góc EMD

c) chứng minh H và N đối xứng với nhau qua BC

d) chứng minh OC vuông góc BE

2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e

a) chứng minh tứ giác bdmc, adhm nội tiếp

b) chứng minh ef//md

c) vẽ đường kính bk của (o). chứng minh ah=ck

d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)

3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e

a) chứng minh tứ giác mnhc, bdnc nội tiếp

b) chứng minh h và e đối xứng với nhau qua bc

c) chứng minh oa vuông góc dn

d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng

 

0
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
14 tháng 7 2021

Vì \(P\in\left(K\right)\Rightarrow\angle APH=90\Rightarrow\angle APH=\angle ADM=90\Rightarrow HPMD\) nội tiếp

18 tháng 5 2018

a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800

=> Tứ giác BEHF nội tiếp.

b, Xét tứ giác AFEC có :

góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)

=> Tứ giác AFEC nội tiếp

23 tháng 3 2017

ko biết

24 tháng 3 2017

Đường tròn c: Đường tròn qua A, B, C Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [A, I] Đoạn thẳng l: Đoạn thẳng [B, K] Đoạn thẳng m: Đoạn thẳng [H, C] Đoạn thẳng n: Đoạn thẳng [K, C] Đoạn thẳng p: Đoạn thẳng [I, C] Đoạn thẳng q: Đoạn thẳng [K, I] Đoạn thẳng r: Đoạn thẳng [A, K] Đoạn thẳng t: Đoạn thẳng [B, F] Đoạn thẳng a: Đoạn thẳng [H, F] A = (-6.94, 5.84) A = (-6.94, 5.84) A = (-6.94, 5.84) B = (-8.06, 1.8) B = (-8.06, 1.8) B = (-8.06, 1.8) C = (-1.34, 1.82) C = (-1.34, 1.82) C = (-1.34, 1.82) Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm D: Giao điểm của i, g Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm E: Giao điểm của j, h Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm K: Giao điểm của c, j Điểm K: Giao điểm của c, j Điểm K: Giao điểm của c, j Điểm I: Giao điểm của c, i Điểm I: Giao điểm của c, i Điểm I: Giao điểm của c, i Điểm J: Trung điểm của m Điểm J: Trung điểm của m Điểm J: Trung điểm của m Điểm O: Tâm của c Điểm O: Tâm của c Điểm O: Tâm của c Điểm F: Giao điểm của c, s Điểm F: Giao điểm của c, s Điểm F: Giao điểm của c, s Điểm P: Trung điểm của A, C Điểm P: Trung điểm của A, C Điểm P: Trung điểm của A, C

a. Ta thấy \(\widehat{HDC}=\widehat{HEC}=90^o\) nên CDHE là tứ giác nội tiếp đường tròn đường kính HC.

b. Ta thấy ngay \(\widehat{IAC}=\widehat{KBC}\) (Cùng phụ với góc ACB) nên \(\widebat{IC}=\widebat{KC}\) (Góc nội tiếp)

suy ra IC = KC ( Liên hệ giữa cung và dây)

Vậy nên tam giác IKC cân tại C.

c. Do \(\widebat{IC}=\widebat{KC}\) nên \(\widehat{KAC}=\widehat{ACI}\) (Góc nội tiếp)

Xét tam giác AHK có AE vừa là đường cao, vừa là phân giác nên AHK là tam giác cân tại A, hay AH = AK.

d. Ta thấy do BOF là đường kính nên \(\widehat{BCF}=90^o\Rightarrow\) AH // FC (Cùng vuông góc với BC).

Tương tự AF // HC vì cùng vuông góc với AB. Vậy thì AFCH là hình bình hành hay AC giao FH tại trung điểm mỗi đường.

P là trung điểm AC nên F cũng là trung điểm FH. Vậy F, H, P thẳng hàng.