K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

a: Xét (O) có

\(\widehat{BAE}\) là góc nội tiếp chắn cung EB

\(\widehat{CAE}\) là góc nội tiếp chắn cung EC

\(\widehat{BAE}=\widehat{CAE}\)

Do đó: \(sđ\stackrel\frown{EB}=sđ\stackrel\frown{EC}\)

=>EB=EC

=>ΔBEC cân tại E

b: 

Xét (O) có

\(\widehat{BAE}\) là góc nội tiếp chắn cung BE

\(\widehat{BCE}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{BAE}=\widehat{BCE}\)

Xét (O) có

\(\widehat{CAE}\) là góc nội tiếp chắn cung EC

\(\widehat{EBC}\) là góc nội tiếp chắn cung EC

Do đó: \(\widehat{CAE}=\widehat{EBC}\)

ΔBEC cân tại E

=>\(\widehat{BEC}=180^0-2\cdot\widehat{EBC}\)

=>\(\widehat{BEC}=180^0-\widehat{EBC}-\widehat{ECB}\)

\(\Leftrightarrow\widehat{BEC}=180^0-\widehat{EAC}-\widehat{EAB}=180^0-\widehat{BAC}\left(1\right)\)

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ABC}+\widehat{ACB}=180^0-\widehat{BAC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{BEC}=\widehat{ABC}+\widehat{ACB}\)

c: Xét ΔABF và ΔAEC có

\(\widehat{ABF}=\widehat{AEC}\)

\(\widehat{BAF}=\widehat{EAC}\)

Do đó: ΔABF đồng dạng với ΔAEC

=>\(\dfrac{AB}{AE}=\dfrac{AF}{AC}\)

=>\(AB\cdot AC=AF\cdot AE\)

d: Xét ΔFAB và ΔFCE có

\(\widehat{FAB}=\widehat{FCE}\)

\(\widehat{AFB}=\widehat{CFE}\)

Do đó: ΔFAB đồng dạng với ΔFCE

=>FA/FC=FB/FE

=>\(FB\cdot FC=FA\cdot FE\)

\(AB\cdot AC-BF\cdot CF\)

\(=AE\cdot AF-AF\cdot FE=AF\cdot\left(AE-FE\right)=AF^2\)

29 tháng 1 2019

Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối 

c/ Xét tam giác ABF và tam giác AEC ta có :

Góc BAF = góc CAE ( AF là phân giác)

góc ABF = góc AEC ( 2 góc nt chắn cung AC)

=>tam giác ABF đồng dạng tam giác AEC (g-g)

=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF

d/ Xét tam giác ABF và tam giác CFE ta có:

góc ABF = góc FEC ( 2 góc nt chắn cung AC )

góc BAF = góc FCE (2 góc nt chắn cung EB )

=> tam giác ABF đồng dạng tam giác CEF (g-g)

=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE

Ta có AF.AE=AB.AC (cmt)

          AF.FE=BF.CF (cmt)

=> AF.AE-AF.FE = AB.AC - BF.CF

=> AF(AE-FE) = AB.AC - BF.CF

=> \(AF^2=AB.AC-BF.CF\)

3 tháng 4 2020

a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)

b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)

c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)

17 tháng 2 2020

A B M C O D

vẽ trên máy nên k dc chính xác

a, Ta có: góc BAM = góc CAM (gt)

=> \(\widebat{BM}=\widebat{CM}\) (2 góc nội tiếp bằng nhau chắn 2 cung bằng nhau)

=>BM = CM (liên hệ giữa cung và dây)

=>t/g BMC cân tại M

b, Ta có: góc AMB = góc ACB (2 góc nội tiếp cùng chắn 1 cung)

góc AMC = góc ABC (2 góc nội tiếp cùng chắn 1 cung)

=> góc AMB + góc AMC = góc ACB + góc ABC

hay góc BMC = góc ABC + góc ACB (đpcm)

c, Xét t/g ABD và t/g AMC

góc BAD = góc MAC (gt)

góc ABD = góc AMC (c/m câu b)

=>t/g ABD đồng dạng vs t/g AMC (g.g)

=>AB/AD = AM/AC => AB.AC=AD.AM (đpcm)

18 tháng 2 2020

ủa câu b đâu có c/m góc ABD bằng góc AMC đâu???