K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
28 tháng 1 2022
1: Xét tứ giác CEHD có
\(\widehat{CEH}+\widehat{CDH}=180^0\)
Do đó: CEHD là tứ giác nội tiếp
2: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
3: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
\(\widehat{CAD}\) chung
Do đó: ΔAEH\(\sim\)ΔADC
Suy ra: AE/AD=AH/AC
hay \(AE\cdot AC=AH\cdot AD\)
Hình vẽ:
Lời giải:
Kẻ $Ax$ là tiếp tuyến của $(O)$
Khi đó: $Ax\perp OA(1)$
Mặt khác:
Dễ thấy tứ giác $BFEC$ có $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.
$\Rightarrow \widehat{AFE}=\widehat{ACB}$
Mà: $\widehat{ACB}=\widehat{xAB}$ (tính chất góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)
Suy ra $\widehat{AFE}=\widehat{xAB}$. Mà 2 góc này ở vị trí so le trong nên $Ax\parallel EF(2)$
Từ $(1);(2)\Rightarrow OA\perp EF$ (đpcm)