K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Hình vẽ:

Chưa phân loại

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

Kẻ $Ax$ là tiếp tuyến của $(O)$

Khi đó: $Ax\perp OA(1)$

Mặt khác:

Dễ thấy tứ giác $BFEC$ có $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.

$\Rightarrow \widehat{AFE}=\widehat{ACB}$

Mà: $\widehat{ACB}=\widehat{xAB}$ (tính chất góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)

Suy ra $\widehat{AFE}=\widehat{xAB}$. Mà 2 góc này ở vị trí so le trong nên $Ax\parallel EF(2)$

Từ $(1);(2)\Rightarrow OA\perp EF$ (đpcm)

1: Xét tứ giác CEHD có

\(\widehat{CEH}+\widehat{CDH}=180^0\)

Do đó: CEHD là tứ giác nội tiếp

2: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

3: Xét ΔAEH vuông tại E và ΔADC vuông tại D có 

\(\widehat{CAD}\) chung

Do đó: ΔAEH\(\sim\)ΔADC

Suy ra: AE/AD=AH/AC
hay \(AE\cdot AC=AH\cdot AD\)

15 tháng 3 2016

Hỏi khắp nơi

9 tháng 1 2016

gianroiHic, vừa đọc xong đề bài đã buồn ngủ rồi!

9 tháng 1 2016

=66

5 tháng 5 2016

kho wa.......

5 tháng 5 2016

ban co hinh k dua minh xem