Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên nửa mặt phẳng bờ ME chứa S, vẽ tiếp tuyến Ex của đường tròn ngoại tiếp ΔMEF
=>góc SFE=góc MEx
=>góc MES=góc MEx
=>SE trùg với Sx
=>SE là tiếp tuyến của đường tròn ngoại tiếp ΔMEF
góc DMF=90 độ
=>DM vuông góc SF
ΔSAO vuông tạiA có AH là đường cao
nên SA^2=SH*SO=SM*SF
=>SM*SF=SN*SI
=>SM/SI=SN/SF
mà góc ESF chung
nên ΔSMN đồng dạng với ΔSIF
=>góc SIF=90 độ
=>M,N,D thẳng hàng
a: Xét (O) có
BA,BE là tiếp tuyến
=>BA=BE
mà OA=OE
nên OB là trung trực của AE
=>OB vuông góc AE
=>BH*BO=BA^2
ΔABC vuông tại A có AD vuông góc BC
nên BD*BC=BA^2
=>BH*BO=BD*BC
b: BH*BO=BD/BC
=>BH/BC=BD/BO
=>góc BHD=góc BCO
=>góc DHO+góc DCO=180 độ
=>DHOC nội tiếp
b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)
mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)
\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp
\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)
câu c tí nữa làm :P
c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD
Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)
Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)
\(\Rightarrow ID.IH=IE.IF\)