K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

A B C O I A' B' C' E F D G S

a) Ta có ^AIC' = ^IAC + ^ICA = ^IAB + ^ICB = ^IAB + ^BAC' = ^IAC' => \(\Delta\)AC'I cân tại C'

=> C' nằm trên trung trực của AI. Tương tự B' cũng nằm trên trung trực của AI => B'C' vuông góc AI

Hay A'I vuông góc với B'C'. Lập luận tương tự B'I vuông góc A'C', C'I vuông góc A'B'

Do đó I là trực tâm của \(\Delta\)A'B'C' (đpcm).

b) Ta thấy ^FDE = ^A'DC' = ^A'AC' = ^IAC' = C'IA (Vì \(\Delta\)AC'I cân tại C') = ^EIC'

Suy ra tứ giác DEIF nội tiếp (đpcm).

c) Gọi S là tâm ngoại tiếp của \(\Delta\)DEF. Vì tứ giác DEIF nội tiếp (cmt) nên S đồng thời là tâm ngoại tiếp DEIF

Gọi giao điểm thứ hai giữa (S) và (O) là G. Khi đó ^DFG = ^DEG => ^GFA' = ^GEC'

Lại có ^EGF = ^EDF = ^A'DC' = ^A'GC' => ^FGA' = ^EGC'. Do vậy \(\Delta\)GEC' ~ \(\Delta\)GFA' (g.g)

=> \(\frac{GC'}{GA'}=\frac{EC'}{FA'}\). Mặt khác ^A'IF = ^C'IA = ^C'AI = ^C'AE và ^IA'F = ^AA'D = ^AC'D = ^AC'E

Cho nên \(\Delta\)AEC' ~ \(\Delta\)IFA' (g.g) => \(\frac{EC'}{FA'}=\frac{AC'}{IA'}\). Mà các điểm A,I,A',C' đều cố định

Nên tỉ số \(\frac{AC'}{FA'}\) là bất biến. Như vậy \(\frac{GC'}{GA'}\)không đổi, khi đó tỉ số giữa (GC' và (GA' của (O) không đổi

Kết hợp với (O), A',C' cố định suy ra G là điểm cố định. Theo đó trung trực của IG cố định

Mà S thuộc trung trực của IG (do D,I,E,F,G cùng thuộc (S)) nên S di động trên trung trực của IG cố định (đpcm).

21 tháng 8 2019

A B C O H E D S F T I G

a) Gọi BH cắt (O) tại S khác B. Qua tính chất quen thuộc của trực tâm  ta thấy H,S đối xứng nhau qua AC.

Do đó ^ASE = ^AHE = 900 (Vì HE // BC, AH vuông góc BC) hay SE vuông góc với AS (1)

Ta có AD là đường kính của (O) => ^ASD chắn nửa (O) => SD vuông góc với AS (2)

Từ (1) và (2) suy ra SE trùng SD hay DE cắt (O) tại S. Như vậy BH,DE cắt nhau trên (O) (đpcm).

b) Tương tự câu a, CH,DF cũng cắt nhau tại 1 điểm trên (O), gọi nó là T

Dễ thấy AH = AS = AT (Tính chất đối xứng). Mà AH,AS,AT lần lượt là khoảng cách từ A đến EF,DE,DF

Nên A chính là tâm bàng tiếp góc D của \(\Delta\)DEF (A nằm ngoài \(\Delta\)DEF) (đpcm).

c) Gọi IH cắt CF tại G. Ta sẽ chỉ ra rằng B,G,E thẳng hàng. Thật vậy:

Ta có FA,FI là phân giác trong và ngoài của ^DFE => FI vuông góc AB => FI // CH

Từ đó \(\Delta\)IGF ~ \(\Delta\)HGC (g.g) => \(\frac{GI}{GH}=\frac{IF}{HC}\)(3)

Mặt khác ^IFE = ^FAH (Cùng phụ ^AFH) = ^HCB. Tương tự ^IEF = ^HBC

Suy ra \(\Delta\)EIF ~ \(\Delta\)BHC (g.g) => \(\frac{IF}{HC}=\frac{IE}{HB}\)(4)

Từ (3) và (4), kết hợp với ^GIE = ^GHB suy ra \(\Delta\)GEI ~ \(\Delta\)GBH (c.g.c)

=> ^IGE = ^HGB. Vì I,G,H thẳng hàng nên kéo theo B,G,E thẳng hàng

Vậy thì BE,CF,IH cắt nhau tại G (đpcm).

18 tháng 5 2021

Bạn ơi, chứng minh cho mình câu b: AH=AS=AT với được không ạ

 

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).a) CM: IE.IF= IC.IDb) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội...
Đọc tiếp

Cho đường tròn (O;R) và dây AB không qua tâm. Gọi I là trung điểm của AB. Trên cung nhỏ AB lấy các điểm phân biệt C và E bất kì ( khác A và B). Gọi F, D lần lượt là giao điểm của EI và CI với (O).

a) CM: IE.IF= IC.ID

b) Vẽ dây cung FG song song AB. Gọi M, N lần lượt là giao điểm của CF, ED với AB. CMR: tam giác IFG cân tại I, từ đó chỉ ra rằng tứ giác có bốn đỉnh I, D, N, G là tứ giác nội tiếp.

c)Gọi H,K lần lượt là trung điểm CF, ED. CMR: tam giác CHI đồng dạng tam giác EKI, từ đó chỉ ra rằng I là trung điểm của đoạn thẳng MN.

d) Gọi L là giao điểm của AC, DB; T là giao điểm của CE và GD; V là giao điểm của hai đường tròn ngoại tiếp các tam giác AEV và tam giác DET. CMR: 4 điểm D,A,L,Q cùng thuộc một đường tròn, từ đó chỉ ra rằng ba điểm L,T,V thẳng hàng

0
Mỗi câu sau đây đúng hay sai ? a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác...
Đọc tiếp

Mỗi câu sau đây đúng hay sai ?

a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy

d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy

e) Giao điểm ba đường phân giác của một tam giác là tâm đường tròn nội tiếp tam giác ấy

f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy

g) Tứ giác có tổng độ dài các cặp cạnh đối bằng nhau thì ngoại tiếp được đường tròn

h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn

i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó

1
8 tháng 6 2017

Các câu đúng : a, d, e, g, h

Các câu sai : b, c, f, i