Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, HS tự chứng minh
c, HS tự chứng minh
d, ∆MIH:∆MAB
=> M H M B = I H A B = 2 E H 2 F B = E H F B
=> ∆MHE:∆MBF
=> M F A ^ = M E K ^ (cùng bù với hai góc bằng nhau)
=> KMEF nội tiếp => M E F ^ = 90 0
a: góc BIM=góc BHM=90 độ
=>BMHI nội tiếp
b: góc CBM=góc MAC=góc MAK
=>góc MAK=góc MIK
a)Có \(\widehat{MEC}=\widehat{MFC}\left(=90^0\right)\)
=>Tứ giác MECF nội tiếp
b)Có \(\widehat{AMB}=\widehat{ACB}\) (hai góc nội tiếp cùng chắn một cung)
\(\widehat{ACB}=\widehat{EMF}\) (hai góc nội tiếp cùng chắn một cung trong đt ngoại tiếp tứ giác MECF)
\(\Rightarrow\widehat{AMB}=\widehat{EMF}\)
Tương tự cũng có: \(\widehat{ABM}=\widehat{EFM}=\left(\widehat{ECM}\right)\)
Xét \(\Delta BMA\) và \(\Delta MEF\) có:
\(\widehat{AMB}=\widehat{EMF}\)
\(\widehat{ABM}=\widehat{EFM}\)
nên \(\Delta BMA\sim\Delta FME\left(g.g\right)\)
\(\Rightarrow\dfrac{BM}{FM}=\dfrac{BA}{FE}\) \(\Leftrightarrow BM.EF=AB.FM\)
c) Gọi \(K=FE\cap AB\)
Có \(\widehat{MFK}=\widehat{ABM}\left(=\widehat{ECM}\right)\)
\(\Rightarrow\)Tứ giác BKMF nội tiếp
\(\Rightarrow\widehat{BKM}+\widehat{MFB}=180^0\)
\(\Rightarrow\widehat{BKM}=90^0\)
Có: \(\widehat{PAM}+\widehat{BCM}=180^0\) (vì BAMC nội tiếp do bốn đỉnh cùng thuộc đt tâm O)
\(\widehat{MCB}+\widehat{MEF}=180^0\) (vì EMCF nội tiếp)
\(\Rightarrow\widehat{PAM}=\widehat{MEQ}\) mà \(\dfrac{AP}{EQ}=\dfrac{\dfrac{1}{2}AB}{\dfrac{1}{2}EF}=\dfrac{AB}{EF}=\dfrac{AM}{EM}\)
=> Tam giác APM và EQM đồng dạng (c.g.c)
\(\Rightarrow\widehat{APM}=\widehat{EQM}\) hay góc KPM= góc KQM
\(\Rightarrow\) Tứ giác KPQM nội tiếp
\(\Rightarrow\widehat{PKM}+\widehat{MQP}=180^0\)
\(\Rightarrow\widehat{MQP}=180^0-90^0=90^0\)
\(\Rightarrow\Delta MQP\) vuông tại Q
=> PM2=MQ2+PQ2
(toi xỉu)
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
Khó hiểu quá