K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Hỏi đáp Toán

a) \(\widehat{ACF}=90^0\) ( chắn nửa đường tròn ) => FC vuông góc với AC

Lại có BH vuông góc với AC => FC // BH (1)

Chứng minh tương tự: BF // CH (2)

Từ (1) và (2) => BFCH là hình bình hành.

b) Vì BFCH là hình bình hành nên 2 đường chéo HF và BC giao nhau tại trung điểm mỗi đường.

Mà M là trung điểm của BC => M đồng thời là trung điểm của HF

=> H, M, F thẳng hàng ( đpcm )

c) Xét tam giác AHF có O là trung điểm của AF

Có M là trung điểm của HF => OM là đường trung điểm của tam giác AHF

=> OM = \(\frac{1}{2}\) AH ( đpcm )

9 tháng 6 2020

Đường trung bình nhaaaaa

25 tháng 5 2019

a,Chứng minh được BFCH là hình bình hành

b, Sử dụng kết quả câu a), suy ra HF đi qua M

c, Chú ý: OM là đường trung bình của ∆AHF => ĐPCM

15 tháng 10 2023

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB đồng dạng với ΔAEC

=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

=>\(AD\cdot AC=AB\cdot AE\)

b: Xét (O) có

ΔABF nội tiếp

AF là đường kính

Do đó: ΔABF vuông tại B

=>BF vuông góc AB

mà CH vuông góc AB

nên BF//CH

Xét (O) có

ΔACF nội tiếp

AF là đường kính

Do đó: ΔACF vuông tại C

=>AC vuông góc CF

mà AC vuông góc BH

nên BH//CF

Xét tứ giác BHCF có

BH//CF

BF//CH

Do đó: BHCF là hình bình hành

c: BHCF là hình bình hành

=>BC cắt HF tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HF

=>H,M,F thẳng hàng

24 tháng 10 2022

a: Xét (O) có

ΔABK nội tiếp

AK là đường kính

Do đó: ΔABK vuông tại B

=>BK vuông góc với AB

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

=>AC vuông góc với CK

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Vì BHCK là hình bình hành

nên BC cắt HK tại trung điểm của mỗi đường

=>M là trung điểm của HK

Xét ΔKAH có

KO/KA=KM/KH

nên OM//AH và OM/AH=KO/KA=1/2

=>OM=1/2AH

11 tháng 4 2020

Bấm nhầm :)))))

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM....
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0
1 tháng 3 2016

a)Gọi I là trung điểm của tam giác BC

Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC

=>IE=ID=IB=IC

=> tứ giác BCDE nội tiếp.  tâm đường tròn là I

b)AFK=90 ( dg cao thứ 3)

ACK=90 (chắn nữa dg tròn)

=>AFB=ACK

c)BD vg góc với AC

ACK=90 =>CK vg góc với AC

=>CK song song với BH

tuong tu CH song song voi BK

=>BHCK là hinh binh hanh

*vì I là trung điểm của BC 

=>I cung la trung diem cua HK

=>H,I,K thang hang