Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E H
a) Ta có: BK \(\perp\)AC ; AD \(\perp\)BC
=> ^ADB = ^BKA = 90 độ
=> Tứ giác AKDB nội tiếp
=> ^KAH = ^DBH
Mà ^KAH = ^CAE = ^CBE = ^DBE
=> ^DBH = ^DBE
=> BD là tia phân giác ^HBE hay BC là tia phân giác ^HBE
b) Xét \(\Delta\)HBE có: BD là đường cao đồng thời là đường phân giác
=> \(\Delta\)HBE cân
=> BD là đường trung tuyến => D là trung điểm HE và HE vuông BC tại D
=> E và H đối xứng với nhau qua BC
A B C D H K E
a ) Ta có : \(BK\perp AC,AD\perp BC\Rightarrow\widehat{AKB}=\widehat{ADB}=90^0\)
\(\Rightarrow AKDB\) nội tiếp
\(\Rightarrow\widehat{EBC}=\widehat{EAC}=\widehat{DAK}=\widehat{KBD}=\widehat{HBD}\)
\(\Rightarrow BC\) là tia phân giác \(\widehat{HBE}\)
b ) Vì BC là tia phân giác \(\widehat{HBE},BD\perp AE\)
\(\Rightarrow\Delta BHE\) cân tại B
=> DH = DE
Lại có \(HE\perp BC\Rightarrow E,H\) đối xứng qua BC
a, Xét tứ giác ABDK có
^AKB = ^ADB = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác ABDK là tứ giác nt 1 đường tròn
b, Ta có ^KBD = ^DAK ( góc nt chắn cung KE của tứ giác ABEH )
mà ^EAC = ^CBE ( góc nt chắn cung EC )
=> ^KBC = ^CBE
=> BC là tia pg ^HBE
Lời giải:
a)
Xét tam giác $ABI$ và $ADC$ có:
$\widehat{ABI}=\widehat{ABC}=\widehat{ADC}$ (góc nt cùng chắn cung $AC$)
$\widehat{AIB}=90^0=\widehat{ACD}$ (góc nt chắn nửa đường tròn)
$\Rightarrow \triangle ABI\sim \triangle ADC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AI}{AC}\Rightarrow AB.AC=AD.AI$
b)
Vì $\triangle ABI\sim \triangle ADC$ nên $\widehat{BAI}=\widehat{DAC}$
$\Rightarrow \widehat{BAD}=\widehat{EAC}$
$\Rightarrow \text{cung(BD)}=\text{cung(EC)}$
$\Rightarrow \widehat{EBC}=\widehat{DCB}(1)$
Lại có:
$\widehat{AED}=90^0$ (góc nt chắn nửa đường tròn) nên $AE\perp ED$. Mà $AE\perp BC$ nên $ED\parallel BC(2)$
Từ $(1);(2)$ suy ra $BEDC$ là hình thang cân nên ta có đpcm.
c)
Ta có:
$\widehat{EBC}=\widehat{DCB}=\widehat{ACD}-\widehat{ACB}=90^0-\widehat{ACB}=\widehat{HBC}$Hay $\widehat{EBI}=\widehat{HBI}$
$\Rightarrow \triangle EBI=\triangle HBI$ (g.c.g)
$\Rightarrow HI=EI$
Ta thấy $HE\perp BC$ tại $I$ và $I$ là trung điểm $HE$ nghĩa là $H,E$ đối xứng nhau qua $BC$
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)
Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)
(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)
b) Xét ΔAMN và ΔABC có:
\(\widehat{BAC}\)chung
\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)
Do đó ΔAMN ~ ΔABC
Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)
hay AM.AC=AN.AB
Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)
Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)
Suy ra tứ giác ANHM nội tiếp
Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)
Mà \(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)
\(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)
Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)
Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)
c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)
Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)
Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)
Do đó tứ giác HMCD nội tiếp
Suy ra \(\widehat{HMD}=\widehat{HCD}\)
Mà \(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)
Nên \(\widehat{HMD}=\widehat{HMN}\)
Vậy MH là phân giác \(\widehat{NMD}\)
Mà MH vuông góc AM (gt)
Nên AM là phân giác ngoài
Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)
hay IH.AD=AH.ID
a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)
→AFAD=AHAB→AF.AB=AH.AD
Tương tự AH.AD=AE.AC→AF.AB=AE.AC
b.Ta có :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o
→AEHF,AEDB,FHDB nội tiếp
→ˆHFE=ˆFAE=ˆHBD=ˆHFD
→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF
→HIHD=FIFD=AIAD
→IH.AD=AI.DH
a) Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)
\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC
Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
vẽ hình
kho