Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác DFEC có
\(\widehat{DFC}=\widehat{DEC}\left(=90^0\right)\)
\(\widehat{DFC}\) và \(\widehat{DEC}\) là hai góc cùng nhìn cạnh DE
Do đó: DFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
a:góc AHM+góc AKM=180 độ
=>AHMK nội tiếp
b: góc MBH+góc ABM=180 độ
góc MCK+góc ACM=180 độ
góc ABM=góc ACM
=>góc MBH=góc MCK
mà góc MHB=góc MKC
nên ΔMHB đồng dạng vơi ΔMKC
=>MH/MK=MB/MC
=>MH*MC=MK*MB
a: góc AHM+góc AKM=180 độ
=>AHMK là tứ giác nội tiếp
b: góc HBM=180 độ-góc ABM
góc KCM=180 độ-góc ACM
góc ABM=góc ACM
=>góc HBM=góc KCM
mà góc MHB=góc MKC
nên ΔMBH đồng dạng với ΔMCK
=>MB/MC=MH/MK
=>MB*MK=MC*MH
a) Theo đề bài, ta thấy \(\widehat{AHM}=\widehat{AKM}=90^o\) nên dễ dàng suy ra tứ giác AHMK nội tiếp do 2 góc đối bù nhau.
b) Do tứ giác AHMK nội tiếp nên \(\widehat{HMK}+\widehat{A}=180^o\). Tứ giác ABMC nội tiếp nên \(\widehat{BMC}+\widehat{A}=180^o\). Từ đó suy ra \(\widehat{HMK}=\widehat{BMC}\) hay \(\widehat{BMH}=\widehat{CMK}\). Lại có \(\widehat{MHB}=\widehat{MKC}=90^o\) nên \(\Delta MHB~\Delta MKC\left(g.g\right)\) \(\Rightarrow\dfrac{MH}{MK}=\dfrac{MB}{MC}\) \(\Rightarrowđpcm\)
Bài 2:
Kẻ OH⊥AB tại H và OK⊥CD tại K
Ta có: OH⊥AB(gt)
AB//CD(gt)
Do đó: OH⊥CD(Định lí 2 từ vuông góc tới song song)
mà OK⊥CD(gt)
và OH và OK có điểm chung là O
nên O,H,K thẳng hàng
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOAB cân tại O(cmt)
mà OH là đường cao ứng với cạnh đáy AB(gt)
nên OH là đường phân giác ứng với cạnh AB(Định lí tam giác cân)
Suy ra: \(\widehat{AOH}=\widehat{BOH}\)
hay \(\widehat{AOK}=\widehat{BOK}\)
Xét ΔOCD có OC=OD(=R)
nên ΔOCD cân tại O(Định nghĩa tam giác cân)
Ta có: ΔOCD cân tại O(cmt)
mà OK là đường cao ứng với cạnh đáy CD(Gt)
nên OK là đường phân giác ứng với cạnh CD(Định lí tam giác cân)
hay \(\widehat{COK}=\widehat{DOK}\)
Ta có: \(\widehat{AOK}=\widehat{BOK}\)(cmt)
\(\widehat{COK}=\widehat{DOK}\)(cmt)
Do đó: \(\widehat{AOK}-\widehat{COK}=\widehat{BOK}-\widehat{DOK}\)
\(\Leftrightarrow\widehat{AOC}=\widehat{BOD}\)
\(\Leftrightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{BD}\)
hay \(\stackrel\frown{AC}=\stackrel\frown{BD}\)(đpcm)