K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác DFEC có

\(\widehat{DFC}=\widehat{DEC}\left(=90^0\right)\)

\(\widehat{DFC}\) và \(\widehat{DEC}\) là hai góc cùng nhìn cạnh DE

Do đó: DFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

9 tháng 4 2016

giải câu c, d đi

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề 

a:góc AHM+góc AKM=180 độ

=>AHMK nội tiếp

b: góc MBH+góc ABM=180 độ

góc MCK+góc ACM=180 độ

góc ABM=góc ACM

=>góc MBH=góc MCK

mà góc MHB=góc MKC

nên ΔMHB đồng dạng vơi ΔMKC

=>MH/MK=MB/MC

=>MH*MC=MK*MB

a: góc AHM+góc AKM=180 độ

=>AHMK là tứ giác nội tiếp

b: góc HBM=180 độ-góc ABM

góc KCM=180 độ-góc ACM

góc ABM=góc ACM

=>góc HBM=góc KCM

mà góc MHB=góc MKC

nên ΔMBH đồng dạng với ΔMCK

=>MB/MC=MH/MK

=>MB*MK=MC*MH

3 tháng 4 2023

 

a) Theo đề bài, ta thấy \(\widehat{AHM}=\widehat{AKM}=90^o\) nên dễ dàng suy ra tứ giác AHMK nội tiếp do 2 góc đối bù nhau.

b) Do tứ giác AHMK nội tiếp nên \(\widehat{HMK}+\widehat{A}=180^o\). Tứ giác ABMC nội tiếp nên \(\widehat{BMC}+\widehat{A}=180^o\). Từ đó suy ra \(\widehat{HMK}=\widehat{BMC}\) hay \(\widehat{BMH}=\widehat{CMK}\). Lại có \(\widehat{MHB}=\widehat{MKC}=90^o\) nên \(\Delta MHB~\Delta MKC\left(g.g\right)\) \(\Rightarrow\dfrac{MH}{MK}=\dfrac{MB}{MC}\) \(\Rightarrowđpcm\)

8 tháng 1 2019

không biết mới học lớp 3 vậy làm thế nào hả

11 tháng 1 2019

Bạn thấy mình ghi cho lớp 9 làm không? :))

Bài 2: 

Kẻ OH⊥AB tại H và OK⊥CD tại K

Ta có: OH⊥AB(gt)

AB//CD(gt)

Do đó: OH⊥CD(Định lí 2 từ vuông góc tới song song)

mà OK⊥CD(gt)

và OH và OK có điểm chung là O

nên O,H,K thẳng hàng

Xét ΔOAB có OA=OB(=R)

nên ΔOAB cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOAB cân tại O(cmt)

mà OH là đường cao ứng với cạnh đáy AB(gt)

nên OH là đường phân giác ứng với cạnh AB(Định lí tam giác cân)

Suy ra: \(\widehat{AOH}=\widehat{BOH}\)

hay \(\widehat{AOK}=\widehat{BOK}\)

Xét ΔOCD có OC=OD(=R)

nên ΔOCD cân tại O(Định nghĩa tam giác cân)

Ta có: ΔOCD cân tại O(cmt)

mà OK là đường cao ứng với cạnh đáy CD(Gt)

nên OK là đường phân giác ứng với cạnh CD(Định lí tam giác cân)

hay \(\widehat{COK}=\widehat{DOK}\)

Ta có: \(\widehat{AOK}=\widehat{BOK}\)(cmt)

\(\widehat{COK}=\widehat{DOK}\)(cmt)

Do đó: \(\widehat{AOK}-\widehat{COK}=\widehat{BOK}-\widehat{DOK}\)

\(\Leftrightarrow\widehat{AOC}=\widehat{BOD}\)

\(\Leftrightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{BD}\)

hay \(\stackrel\frown{AC}=\stackrel\frown{BD}\)(đpcm)