Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Câu e không liên quan tới mấy câu trước, nhở)
Vẽ đường cao \(AL\). Khi đó \(AH.BC=AH\left(BL+CL\right)=AH.BL+AH.CL=2S_{AHB}+2S_{AHC}\)
Lập thêm 2 cái tương tự rồi cộng lại, phép màu sẽ xảy ra.
Xét tứ giác CEHD ta có:
Góc CEH = 900 (Vì BE là đường cao)
Góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.
a: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc IBF=góc IEC
Xét ΔIBF và ΔIEC có
góc IBF=góc IEC
góc I chung
=>ΔIBF đồng dạng với ΔIEC
=>IB/IE=IF/IC
=>IB*IC=IE*IF
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
Vẽ đường kính AK của đường tròn (O).
Chứng minh tứ giác BHCK là hình bình hành.
Gọi M là giao điểm của BC và HK suy ra M là trung điểm của BC nên OM là đường trung bình của tam giác AHK nên OM vuông góc với BC và AH = 2.OM
AH.BC=2.OM.BC = 4SBOC. Tương tự BH.AC=4SAOC, CH.AB=4SAOB
Cộng 3 đẳng thức được đpcm