Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác COA tao có FD là đường trung bình
=> FD = 1/2 A'C'
chứng minh tương tự FD = 1/2 AC => A'C' =AC
chứng minh tương tự B'C"= BC; A'B'=AB
vậy tam giác ABC =tam giác A'B'C'
A B C M N D E
Xét \(\Delta DAM\) và \(\Delta CBM\) có:
\(BM=AM\left(gt\right);\widehat{DMA}=\widehat{CMB}\left(đ.đ\right);DM=MC\left(đ.đ\right)\Rightarrow\Delta DAM=\Delta CBM\left(c.g.c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{CBM}\) ( 1 )
Tương tự \(\Delta AEN=\Delta CBN\left(c.g.c\right)\Rightarrow\widehat{EAN}=\widehat{BCN}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra:\(\widehat{DAM}+\widehat{EAN}=\widehat{CBM}+\widehat{BCN}\)
\(\Rightarrow\widehat{DAM}+\widehat{EAN}+\widehat{BAC}=\widehat{CBM}+\widehat{BCN}+\widehat{BAC}\Rightarrow\widehat{DAE}=180^0\)
=> D,A,E thẳng hàng.
Mặt khác \(DA=BC;EA=BC\Rightarrow DA+EA=2BC\Rightarrow DE=2BC\Rightarrow DA=EA\Rightarrowđpcm\)
Sửa đề: EF//AB(F thuộc BC)
Xét tứ giác AKCF có
E là trung điểm chung của AC và KF
=>AKCF là hbh
=>AK//CF
=>AK//BC
Tứ giác AOBM có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành suy ra :
BM // OA, BM = OA (1)
Chứng minh tương tự ta có :
NC // OA, NC = OA (2)
Từ (1) và (2) suy ra BM // NC, BM = NC
Vậy MNCB là hình bình hành
Xét tứ giác ABCD có
AM=CM; BM=DM => ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AD//=BC
Xét ứ giác ACBE có
AN=BN; CN=EN => ACBE là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AE//=BC
=> AD=AE =BC
=> AE trùng AD hay A; D; E thẳng hàng (Qua 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)
=> D đối xứng với E qua A
Đề bài yêu cầu gì?