Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{BC}{2}\)
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
b: Xét tứ giác DECF có
DE//CF
DF//CE
Do đó: DECF là hình bình hành
=>DC cắt EF tại trung điểm của mỗi đường
mà G là trung điểm của DC
nên G là trung điểm của EF
=>E,G,F thẳng hàng
c: Xét ΔABC có
D là trung điểm của BA
DF//AC
Do đó: F là trung điểm của BC
Xét ΔDBC có
DF,BG là các đường trung tuyến
DF cắt BG tại H
Do đó: H là trọng tâm của ΔDBC
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a) Tứ giác AHCE có
AD = DC
HD = DE
=> AHCE là hình bình hành
H =90°
=> AHCE là hình chữ nhật
b) Vì ∆ABC cân tại A
=>AB = AC
Mà AC = HE (AHCE là hình chữ nhật)
=> AB = HE
Mình mới làm tới câu b thôi
a)Bn c/m AEBH là hbh (2 đchéo cắt tại trđiểm mỗi đường) rồi có góc H vuông nên là hcn
b)từ hcn ta có EH=AB, mà Ab=AC
=>EH=AC
c)ta có EH=ac, ea=HC(cùng bằng BH)
=>EACH là hbh
=>EH//AC
tứ giác EFCD có
ED//FC
ED=FC(cùng bằng AD)
nên EFCD là hbh
=>EF//CD
mà G nằm trên CD
>EF//CG
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
b: Xét tứ giác DECF có
DE//CF
DF//CE
Do đó: DECF là hình bình hành
=>DC cắt EF tại trung điểm của mỗi đường
=>E,M,F thẳng hàng
giúp câu C cái song song vs chủ yếu đang cần câu C á