K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

(Bạn tự vẽ hình nha!)

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

          AB=AC (gt)

          A là góc chung

Do đó, ............... (ch-gn)

=> BD=CE (2 cạnh tương ứng)

b) Vì AB=AC nên tam giác ABC là tam giác cân tại A => B=C => B1 + B2 = C1 + C2

Mà B1 = C1 (vì tam giác ABD= tam giác ACE) nên B2= C2

Xét tam giác BEC vuông tại E và tam giác CDB vuông tại D có:

          BD=CE (cmt)

          B2= C2 (cmt)

Do đó,.......... (ch-gn)

=> BE=DC (2 cạnh tương ứng)

Xét tam giác OBE vuông tại E và tam giác OCD vuông tại D có:

         BE= DC (cmt)

         B1 = C1 (cmt)

Do đó tam giác OBE= tam giác OCD (cgv-gnk)

c) Ta có: AB=AC (gt) => AE+EB= AD+DC

Mà BE=DC (cmt) nên AE=AD

Xét tam giác ADO và tam giác AEO có:

          EO=OD ( vì tam giác OBE= tam giác OCD)

          AE=AD (cmt)

          AO là cạnh chung

Do đó,.................(c.c.c)

=> A1= A2 ( 2 góc tương ứng)

=> AO là tia phân giác góc A

Vậy AO là tia phân giác góc BAC.

24 tháng 12 2016

a) t/g ABC cân tại A

=> ABC = ACB ( tính chất tam giác cân)

Xét t/g DCB vuông tại D và tam giác EBC vuông tại E có:

BC là cạnh chung

DCB = EBC (cmt)

Do đó, t/g DCB = t/g EBC ( cạnh huyền - góc nhọn)

=> BD = CE (2 cạnh tương ứng) (đpcm)

b) t/g DCB = t/g EBC (câu a)

=> CD = BE (2 cạnh tương ứng)

DBC = ECB (2 góc tương ứng)

Mà ABC = ACB (câu a)

=> ABC - DBC = ACB - ECB

=> ABD = ACE

Xét t/g EBO vuông tại E và t/g DCO vuông tại D có:

BE = CD (cmt)

EBO = DCO (cmt)

Do đó, t/g EBO = t/g DCO ( cạnh góc vuông và góc nhọn kề)

=> OB = OC (2 cạnh tương ứng) (1)

OE = OD (2 cạnh tương ứng) (2)

Từ (1) và (2) => đpcm

c) Dễ thấy, t/g AOC = t/g AOB (c.c.c)

=> OAC = OAB (2 góc tương ứng)

=> AO là phân giác CAB (đpcm)

24 tháng 12 2016

A B C E D O

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:

AB = AC (gt)

Góc A chung

=> ΔABD = ΔACE ( cạnh huyền - góc nhọn )

=> BD = CE ( 2 cạnh tương ứng )

b) Vì ΔABD = ΔACE nên góc ABD = ACE ( 2 góc tương ứng ) và AD = AE ( 2 cạnh tương ứng )

Ta có: AD + DC = AC

AE + EB = AB

mà AD = AE (cm trên); AC = AB (gt)

=> DC = EB

Xét ΔEOB và ΔDOC có:

góc ABD = ACE (cm trên)

EB = DC (cm trên)

góc OEB = ODC (= 90)

=> ΔEOB = ΔDOC (g.c.g)

=> OE = OD ( 2 cạnh tương ứng ) ; OB = OC ( 2 cạnh tương ứng )

c) Do ΔEOB = ΔĐỌC nên EO = DO ( 2 cạnh tương ứng )

Xét ΔAOE vuông tại E và ΔAOD vuông tại D có:

OE = DO ( cm trên )

AE = AD (câu b)

=> ΔAOE = ΔAOD ( cạnh góc vuông )

=> góc OAE = OAD ( 2 góc tương ứng )

Do đó AO là tia phân giác của góc EAD hay AO là tia pg của góc BAC.

Chúc học tốt Cathy Trang

 

19 tháng 2 2020

Ai trả lời giúp mình với mình đang cần gấp

19 tháng 2 2020

a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
 Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
    Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
      góc CBD + góc ABD = góc ABC
      góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
      BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9   = 25
=> BD2         = 25 - 9
=> BD2         = 16
=> BD2         = \(\sqrt{14}\)   
=> BD           = 4cm
Vậy a)... b)... c)... d)...