K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Áp dụng định lí Cosin : 

\(BC^2=AB^2+AC^2-2AB.AC.cosA\)

25 tháng 9 2016

a, \(\sqrt{7}\) cm

b, căn 21 cm

c, \(\sqrt{7-2\sqrt{3}}\) cm

a: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{5-BC^2}{2\cdot1\cdot2}=\dfrac{5-BC^2}{4}\)

\(\Leftrightarrow\dfrac{5-BC^2}{4}=\dfrac{-1}{2}\)

\(\Leftrightarrow5-BC^2=-2\)

\(\Leftrightarrow BC=\sqrt{7}\left(cm\right)\)

b: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{125-BC^2}{100}\)

\(\Leftrightarrow125-BC^2=50\)

hay \(BC=5\sqrt{3}\left(cm\right)\)

c: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{7-BC^2}{8\sqrt{3}}\)

\(\Leftrightarrow7-BC^2=4\sqrt{3}\)

hay \(BC=2-\sqrt{3}\left(cm\right)\)

12 tháng 11 2016

helpppppppppppppppppppppppppppppppppppppppppppp meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

20 tháng 10 2016

à quên không vẽ hình cũng được

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)

9 tháng 11 2023

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)