Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
Do đo:ΔABD đồng dạng với ΔACE
b: Xét ΔAED và ΔACB có
AE/AC=AD/AB
góc DAE chung
DO đó: ΔAED\(\sim\)ΔACB
c: Xét ΔEHA vuông tại E và ΔEBC vuông tại E có
góc EAH=góc ECB
Dođó: ΔEHA đồng dạng với ΔEBC
Suy ra: EH/EB=EA/EC
hay \(EH\cdot EC=EA\cdot EB\)
1
a) ta có A đối xứng với F qua O => O là trung điểm của AF
=> BO là trung tuyến của AF (1)
=> CO là trung tuyến của AF (2)
ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC
=> OA = OB =OC (3)
từ 1-2-3 => Góc ABF = góc ACF = 90
=> AB vuông góc với FB
AC vuông góc với FC
mà CH vuông góc AB => CH // BF
BH vuông góc với AC => BH//CF
Xét tứ giác BHCF có
CH // BF
BH//CF
=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo
M là trung điểm của BC
=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM
=> H đối xứng với F qua M
b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF
=> OM là đường trung bình
=> OM =1/2AH <=> AH/OM=2
vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC
ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )
=> OM // AH => góc HAG =góc GMO (2 góc so le trong)
xét tam giác AHG và tam giác MOG
có :góc HGA =góc MGO (2 góc đối đỉnh)
góc HAG =góc GMO (cmt)
=> đồng dạng (gg) => AH /OM = AG/MG =2
<=> AG=2MG <=> AM = AG + MG =3MG
<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)
=> G là trọng tâm của tma giác ABC