K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

Dễ c/m đc: \(\Delta AHB~\Delta DOE\)

=>  \(\frac{AB}{DE}=\frac{AH}{OD}=\frac{GH}{OE}=\frac{1}{2}\)

Gọi K là trung điểm AH 

Dễ c.m: AODK là hình bình hành

=> DK = OA = R

Xét tam giác ODA1:  \(OA_1^2=OD^2+DA_1^2=OD^2+DH^2=\frac{1}{2}\left(OH^2+DK^2\right)=\frac{1}{2}\left(OH^2+R^2\right)\)

MỌI NGƯỜI GIÚP MK Ý CHỨNG MINH DƯỚI ĐÂY:

Chứng minh:    \(OB_1^2=OB_2^2=\frac{1}{2}\left(OH^2+R^2\right);\)\(OC_1^2+OC_2^2=\frac{1}{2}\left(OH^2+R^2\right)\)

10 tháng 4 2020

Gọi G' là giao của IJ và AA1

Xét \(\Delta\)ABC có B1;C1 lần lượt là trung điểm của cạnh AC và AB

=> B1C1 =\(\frac{BC}{2}\). Tương tự: A1B1=\(\frac{AB}{2}\); C1A1=\(\frac{CA}{2}\)

Xét \(\Delta\)A1B1C1 và \(\Delta\)ABC có: \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{C_1A_1}{CA}\left(=\frac{1}{2}\right)\)

Do đó tam giác A1B1C1 đồng dạng với tam giác ABC (c.c.c)

=> \(\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C}=\widehat{ABC}\)

mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2}\)

Do đó: \(\Delta JA_1B_1\) đồng dạng với tam giác IAB (g.g)

=> \(\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)

Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\left(slt;AB//A_1B_1\right)\). Nên \(\widehat{IAA_1}=\widehat{IA_1A}\Rightarrow AI//A_1J\)

Xét tam giác G'AI có: A1J // AI => \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\) (hệ quả của định lý Talet)

=> \(AG'=\frac{2}{3}AA_1\)

Tam giác ABC có AA1 là đường trung tuyến, G' thuộc đoạn thẳng AA1 và AG' \(=\frac{2}{3}AA_1\)

Do đó G' là trọng tâm tam giác ABC, G' thuộc đoạn thẳng AA1 và AG'=\(\frac{2}{3}AA_1\)

1. Xét tứ giác CEHD ta có:Góc CEH = 900 (Vì BE là đường cao)Góc CDH = 900 (Vì AD là đường cao)=> góc CEH + góc CDH = 1800Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.CF là đường cao => CF ┴ AB => góc BFC = 900.Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường...
Đọc tiếp

1. Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

0

Đặt hai điểm B1;C1 lần lượt là E,F

Xét ΔAFB vuông tại F có FK là đường cao

nên \(AK\cdot AB=AF^2\left(1\right)\)

Xét ΔAEC vuông tại E có EG là đường cao

nên \(AG\cdot AC=AE^2\left(2\right)\)

Xét ΔAGB vuông tại G và ΔAKC vuông tại K có

góc KAC chung

Do đó: ΔAGB\(\sim\)ΔAKC

Suy ra: AG/AK=AB/AC

hay \(AG\cdot AC=AK\cdot AB\left(3\right)\)

Từ (1) và (2) suy ra AE=AF