Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B M C O O 1 2 O I E D N
a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1) = ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB
Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).
b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI
Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB
=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).
c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)
=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC
Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)
Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)
Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).
CAI NAY mk chua hoc xl ban ,chuc ban nam ms vv hp bên gia đinh nhe ////
O O E B A 1 2 M J C F I x K N
a) Gọi AM cắt (O2) tại N khác M. Khi đó: Dễ thấy: ^MFE=^MNE = ^MO2E/2 = ^MO1J/2 = ^MAJ
=> ^MFI = ^MCI (Do ^MAJ = ^MCI) => Tứ giác MCFI nội tiếp => ^JAM = ^MCI = ^MFI = ^MEB hay ^JAM = ^JEA
Từ đó: \(\Delta\)JAM ~ \(\Delta\)JEA (g.g) => JA2 = JM.JE (1)
Ta có: ^JIM = ^CIM = ^CFM = ^FEM => \(\Delta\)JIM ~ \(\Delta\)JEI (g.g) => IJ2 = JM.JE (2)
Từ (1);(2) suy ra: JA2 = IJ2 = JM.JE => \(JA=IJ=\sqrt{JM.JE}\) (đpcm).
b) Gọi Cx là tia đối tia CA. Ta có đẳng thức về góc: ^ICx = ^JCA = ^JMA = ^JAB (Vì \(\Delta\)JAM ~ \(\Delta\)JEA)
=> ^ICx = ^JAB = ^ICB => CI là tia phân giác ^BCx hay CI là tia phân giác ngoài tại C của \(\Delta\)ABC (đpcm).
c) Ta thấy: \(\Delta\)IKC ~ \(\Delta\)IJA, JA = JI (cmt) => KI = KC (3)
Theo câu b thì ^JAB = ^JCA = ^JBA => \(\Delta\)ABJ cân tại J => JA = JB = JI => \(\Delta\)IJB cân tại J
=> ^CBI = ^JBI - ^JBC = (1800 - ^IJB)/2 - ^JBC = (1800 - ^IJB - 2.^JBC)/2 = (1800 - ^BAJ - ^JBC)/2
= (^ACB + ^JBA - ^JAC)/2 = (^ACB + ^BAC)/2 => BI là phân giác ^CBE.
Từ đó I là tâm bàng tiếp ứng đỉnh A của \(\Delta\)ABC => AI là phân giác ^BAC
Do vậy, K là điểm chính giữa cung BC không chứa A của (O1) => KC = KB (4)
Từ (3);(4) suy ra: KB = KC = KI => K là tâm ngoại tiếp \(\Delta\)BCI (đpcm).
Đề bài bị thừa hai điểm M,N nhé bạn.
Gọi X,Y tương ứng là tiếp điểm của hai đường tròn \(\left(O_1\right),\left(O_2\right)\) với \(BC\). Ta có \(\Delta O_1XH\sim\Delta O_2YH\) (cùng là tam giác vuông cân). Suy ra \(\frac{O_1H}{O_2H}=\frac{r_1}{r_2}\) với \(r_1,r_2\) tương ứng là bán kính đường tròn nội tiếp hai tam giác \(\Delta AHB,\Delta CHA.\) Mà \(\Delta AHB\sim\Delta CHA\) nên \(\frac{r_1}{r_2}=\frac{AB}{CA}\to\frac{O_1H}{O_2H}=\frac{AB}{CA}\to\Delta O_1HO_2\sim\Delta BAC\) (c.g.c). Suy ra \(\angle ABC+\angle HO_2O_1=90^{\circ}.\)
Đến đây ta có \(\angle CO_2O_1+\angle O_1BC=\angle HO_2C+\angle HO_2O_1+\angle O_1BC\)
\(=180^{\circ}-\frac{\angle AHC+\angle ACH}{2}+\angle HO_2O_1+\angle O_1BC=180^{\circ}-\frac{180^{\circ}-\angle HAC}{2}+\angle HO_2O_1+\angle O_1BC\)
\(=90^{\circ}+\angle HO_2O_1+\angle ABC=180^{\circ}.\)
Vậy tứ giác \(BCO_1O_2\) nội tiếp.
Dễ c/m đc: \(\Delta AHB~\Delta DOE\)
=> \(\frac{AB}{DE}=\frac{AH}{OD}=\frac{GH}{OE}=\frac{1}{2}\)
Gọi K là trung điểm AH
Dễ c.m: AODK là hình bình hành
=> DK = OA = R
Xét tam giác ODA1: \(OA_1^2=OD^2+DA_1^2=OD^2+DH^2=\frac{1}{2}\left(OH^2+DK^2\right)=\frac{1}{2}\left(OH^2+R^2\right)\)
MỌI NGƯỜI GIÚP MK Ý CHỨNG MINH DƯỚI ĐÂY:
Chứng minh: \(OB_1^2=OB_2^2=\frac{1}{2}\left(OH^2+R^2\right);\)\(OC_1^2+OC_2^2=\frac{1}{2}\left(OH^2+R^2\right)\)