K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AEHF có

\(\widehat{HEA}+\widehat{HFA}=180^0\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác AEDB có 

\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)

nên AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1.

Chứng minh được \widehat{CEB} = \widehat{BDC} = 90^{\circ}CEB=BDC=90.

Suy ra 44 điểm B,E, D, CB,E,D,C cùng thuộc đường tròn đường kính CBCB nên tứ giác BCDEBCDE nội tiếp.

Có tứ giác BCDEBCDE nội tiếp nên \widehat{DCE} = \widehat{DBE}DCE=DBE (22 góc nội tiếp cùng chắn cung DEDE) hay \widehat{ACQ} = \widehat{ABP}ACQ=ABP.

Trong đường tròn tâm (O)(O), ta có \widehat{ACQ}ACQ là góc nội tiếp chắn cung AQAQ và \widehat{ABP}ABP nội tiếp chắn cung APAP

\Rightarrow \overset{\frown}{AQ}=\overset{\frown}{AP}AQ=AP.

2.

(O)(O) có \overset{\frown}{AQ}=\overset{\frown}{AP}AQ=AP nên \widehat{ABP} = \widehat{ABQ}ABP=ABQ hay \widehat{HBE} = \widehat{QBE}HBE=QBE.

Ta chứng minh được BEBE vừa là đường cao, vừa là phân giác của tam giác HBQHBQ nên EE là trung điểm của HQHQ.

Chứng minh tương tự DD là trung điểm của HPHP \Rightarrow DEDE là đường trung bình của tam giác HPQHPQ \Rightarrow DE // PQDE//PQ (1).

Do \overset{\frown}{AQ}=\overset{\frown}{AP}AQ=AP nên AA là điểm chính giữa cung PQPQ \Rightarrow OA \perp PQOAPQ (2).

Từ (1) và (2) suy ra OA \perp DEOADE.

3.

Kẻ đường kính CFCF của đường tròn tâm (O)(O), chứng minh tứ giác ADHEADHE nội tiếp đường tròn đường kính AHAH.

Chứng minh tứ giác AFBHAFBH là hình bình hành, suy ra BF=AHBF=AH.

Trong đường tròn (O)(O) có \widehat{CAB} = \widehat{CFB} = 60^{\circ}CAB=CFB=60 (2 góc nội tiếp cùng chắn cung BCBC). Chỉ ra tam giác BCFBCF vuông tại BB và áp dụng hệ thức giữa cạnh và góc ta được BF=CF. \cos 60^{\circ} =R=6BF=CF.cos60=R=6 cm.

Đường tròn ngoại tiếp tứ giác ADHEADHE cũng là đường tròn ngoại tiếp tam giác ADEADE.

Gọi rr là bán kính đường tròn ngoại tiếp tam giác ADEADE.

Suy ra 2r=AH=BF=62r=AH=BF=6 cm.

Vậy r=3r=3 cm.

12 tháng 8 2016

Gọi I,E,F lần lược là tiếp điểm của đường tròn tâm O nội tiếp với AB,BC,CA ta có OI = OE = OF = r

S​ ABC = S AOB + S BOC + S COA = AB.OI/2 + BC.OE/2 + CA.OF/2 

= (AB + BC + CA).r/2 = pr

9 tháng 8 2020

A B C O r

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv

Ta có : SABC = SOAB + SOAC + SOBC

 \(=\left(\frac{1}{2}\right)AB.r+\left(\frac{1}{2}\right).AC.r+\left(\frac{1}{2}\right).BC.r\)

    \(=\left(\frac{1}{2}\right)\left(AB+AC+BC\right).r\)

Mà AB + AC + BC = 2p

Nên  \(S_{ABC}=\left(\frac{1}{2}\right).2p.r=p.r\)

6 tháng 5 2020

Câu hỏi là gì bạn?

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

31 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi O là tâm đường tròn nội tiếp tam giác ABC

Nối OA, OB, OC

Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv

Ta có : S A B C = S O A B + S O A C + S O B C

= (1/2).AB.r + (1/2).AC.r + (1/2).BC.r

= (1/2)(AB + AC + BC).r

Mà AB + AC + BC = 2p

Nên  S A B C = (1/2).2p.r = p.r

8 tháng 8 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, C] Đoạn thẳng n: Đoạn thẳng [P, Q] Đoạn thẳng p: Đoạn thẳng [P, A] Đoạn thẳng q: Đoạn thẳng [Q, A] Đoạn thẳng t_1: Đoạn thẳng [A, O] Đoạn thẳng a: Đoạn thẳng [A, I] O = (1.88, 2.28) O = (1.88, 2.28) O = (1.88, 2.28) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g

a) Ta thấy ngay tứ giác BEDC nội tiếp vì \(\widehat{BEC}=\widehat{BDC}=90^o\)

b) Do tứ giác BEDC nội tiếp nên \(\widehat{EDH}=\widehat{BCH}\)

Vậy thì \(\Delta EHD\sim\Delta BHC\left(g-g\right)\Rightarrow\frac{EH}{BH}=\frac{DH}{CH}\Rightarrow BH.DH=EH.CH\)

c) Do góc \(\widehat{EDH}=\widehat{BCH}\) nên \(\widehat{EDA}=\widehat{CBE}\) (Cùng phụ với hai góc trên)

Suy ra \(\widebat{AC}=\widebat{AP}+\widebat{QC}\)

Lại có \(\widebat{AC}=\widebat{AQ}+\widebat{QC}\Rightarrow\widebat{AP}=\widebat{AQ}\Rightarrow AP=AQ\)

(Liên hệ giữa dây và cung căng dây)

Vậy tam giác APQ cân tại A.

Ta thấy \(\widehat{AEQ}=\widebat{AQ}+\widebat{PB}=\widebat{AP}+\widebat{PB}=\widebat{AB}=\widehat{AQB}\)

Vậy \(\Delta AEQ\sim\Delta AQB\left(g-g\right)\Rightarrow\frac{AE}{AQ}=\frac{AQ}{AB}\Rightarrow AQ^2=AE.AB\Rightarrow AP^2=AE.AB\)

d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên \(AO⊥PQ\)

Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.

Khi đó \(\frac{S_1}{S_2}=\frac{\frac{1}{2}PQ.AK}{\frac{1}{2}BC.AI}=\frac{PQ}{2BC}\Rightarrow\frac{AK}{AI}=\frac{1}{2}\)

Lại có \(\Delta ABI\sim\Delta ADK\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AI}{AK}=\frac{1}{2}\)

Xét tam giác vuông ABD có \(\frac{AB}{AD}=\frac{1}{2}\Rightarrow\widehat{BAC}=60^o\Rightarrow\widebat{BC}=60^o\)

Như vậy, khi A thay đổi trên cung lớn BC  thì \(\widehat{BAC}=60^o\). Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :

\(BC=R\sqrt{3}\)

A B C O I R 30 O

a) Ta thấy ngay tứ giác BEDC nội tiếp vì ^BEC=^BDC=90o

b) Do tứ giác BEDC nội tiếp nên ^EDH=^BCH

Vậy thì ΔEHD∼ΔBHC(g−g)⇒EHBH =DHCH ⇒BH.DH=EH.CH

c) Do góc ^EDH=^BCH nên ^EDA=^CBE (Cùng phụ với hai góc trên)

Suy ra ⁀AC=⁀AP+⁀QC

Lại có ⁀AC=⁀AQ+⁀QC⇒⁀AP=⁀AQ⇒AP=AQ

(Liên hệ giữa dây và cung căng dây)

Vậy tam giác APQ cân tại A.

Ta thấy ^AEQ=⁀AQ+⁀PB=⁀AP+⁀PB=⁀AB=^AQB

Vậy ΔAEQ∼ΔAQB(g−g)⇒AEAQ =AQAB ⇒AQ2=AE.AB⇒AP2=AE.AB

d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên AO⊥PQ

Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.

Khi đó S1S2 =12 PQ.AK12 BC.AI =PQ2BC ⇒AKAI =12 

Lại có ΔABI∼ΔADK(g−g)⇒ABAD =AIAK =12 

Xét tam giác vuông ABD có ABAD =12 ⇒^BAC=60o⇒⁀BC=60o

Như vậy, khi A thay đổi trên cung lớn BC  thì ^BAC=60o. Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :

BC=R√3

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

25 tháng 4 2022

Viết còn cặc