Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét 2 tam giác vuông t/giác BHM và t/giác CKM, có
BM = MC ( M là t/điểm của BC)
góc cmk = góc bmh ( đối đỉnh)
=> t/giác BHM = t/giác CKM ( cạnh huyền góc nhọn )
=> góc H = góc K mà chúng ở vị trí slt => BH // KC
=> BH = CK ( 2 cạnh tuowg ứng)
b) tương tự câu a
A B C M K H
a)
+)Có \(\hept{\begin{cases}AM\perp BH\left(gt\right)\\CK\perp AM\left(gt\right)\end{cases}\Rightarrow}\)BH//CK
+) Xét \(\Delta BHM;\Delta CKM\)có: \(\hept{\begin{cases}\widehat{BHM}=\widehat{CKM}\left(=90^o\right)\\MC=BM\left(gt\right)\\\widehat{HMB}=\widehat{KMC}\left(đ^2\right)\end{cases}\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\Rightarrow BH=CK}\)
b)
Xét ΔHMC;ΔKMB có:
BM=MC(gt)
^HMC=^KMB (đối đỉnh)
HM=MK(do ΔBHM=ΔCKM)
=> ΔHMC=ΔKMB(cgc)
=> ^HCM=^KBM(2 góc tương ứng)
Mà : 2 góc này ở vị trí so le trong
=> BK // CH (đpcm)
Có : ΔHMC=ΔKMB(cmt)
=> BK=CH(2 cạnh tương ứng)
c) Ta có: \(\hept{\begin{cases}HF=FC\\BE=EK\end{cases}\left(gt\right)}\)
Mà BK=HC (cmt) => HF=FC =BE=EK
Xét \(\Delta BEM;\Delta FCM:\hept{\begin{cases}BM=MC\left(gt\right)\\\widehat{MBE}=\widehat{MCF}\left(slt\right)\\BE=FC\left(cmt\right)\end{cases}\Rightarrow\Delta BEM=\Delta FCM\left(cgc\right)}\)
=> EM=FM (2 cạnh tương ứng)
=> M Là trung điểm của EF
Do đó : E, ,M, F thẳng hàng
Nguồn: nguyen thi vang (h.vn)
Bạn bổ sung trên hình điểm E và F nhé. Mình quên chưa thêm