Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDC có
DO là đường trung tuyến
DO=BC/2
Do đó: ΔBCD vuông tại D
=>CD\(\perp\)DB tại D
=>CD\(\perp\)AB tại D
Xét ΔBEC có
EO là đường trung tuyến
EO=BC/2
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)AC tại E
b: Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại K
Do đó: K là trực tâm của ΔABC
=>AK\(\perp\)BC
Đường tròn c: Đường tròn với tâm O và bán kính 3 Đoạn thẳng g: Đoạn thẳng [O, M] Đoạn thẳng i: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [C, D] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [B, C] Đoạn thẳng p: Đoạn thẳng [A, E] Đoạn thẳng q: Đoạn thẳng [C, E] Đoạn thẳng r: Đoạn thẳng [O, E] Đoạn thẳng s: Đoạn thẳng [O, C] Đoạn thẳng b: Đoạn thẳng [C, F] Đoạn thẳng d: Đoạn thẳng [D, F] Đoạn thẳng g_1: Đoạn thẳng [F, H] Đoạn thẳng h_1: Đoạn thẳng [B, H] Đoạn thẳng k_1: Đoạn thẳng [K, B] Đoạn thẳng l_1: Đoạn thẳng [H, K] Đoạn thẳng m_1: Đoạn thẳng [A, K] Đoạn thẳng n_1: Đoạn thẳng [C, H] O = (-2.32, 5.92) O = (-2.32, 5.92) O = (-2.32, 5.92) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm M: Điểm trên ĐườngTròn(O, 1) Điểm M: Điểm trên ĐườngTròn(O, 1) Điểm M: Điểm trên ĐườngTròn(O, 1) Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, h Điểm E: Giao điểm đường của m, n Điểm E: Giao điểm đường của m, n Điểm E: Giao điểm đường của m, n Điểm F: Giao điểm đường của t, a Điểm F: Giao điểm đường của t, a Điểm F: Giao điểm đường của t, a Điểm H: Giao điểm đường của e, f_1 Điểm H: Giao điểm đường của e, f_1 Điểm H: Giao điểm đường của e, f_1 Điểm K: Giao điểm đường của i_1, j_1 Điểm K: Giao điểm đường của i_1, j_1 Điểm K: Giao điểm đường của i_1, j_1
a) AB là đường kính, C thuộc đường tròn nên \(\widehat{ACB}=90^o\) hay tam giác ABC vuông tại C.
Áp dụng hệ thức lượng trong tam giác vuông, ta có
\(BC^2=MB.AB=2.6=12\Rightarrow BC=\sqrt{12}\left(cm\right)\)
b) Xét tam giác cân OAC có OE là đường cao nên đồng thời là phân giác.
Từ đó ta có \(\Delta AOE=\Delta COE\left(c-g-c\right)\Rightarrow\widehat{ECO}=\widehat{EAO}=90^o\)
Vậy EC là tiếp tuyến của (O) tại C.
c) Xét tam giác AFK, ta thấy ngay B là trực tâm nên \(AK\perp FD\). Lại có \(AD\perp FD\), vậy A, D, F thẳng hàng.
Ta thấy ngay AH là phân giác góc \(\widehat{FAK}\) mà lại là đường cao, vậy tam giác AH đồng thời là trung trực của FK.
B thuộc AH, vậy BF = BK hay tam giác FBK cân tại B.
d) Ta có tứ giác ACHK nội tiếp nên \(\widehat{HCF}=\widehat{AKF}=\widehat{AFK}\) (Tam giác AFK cân)
Ta cũng có \(\widehat{ACO}=\widehat{OAC}\)(Tam giác AOC cân)
Vậy nên \(\widehat{HCF}+\widehat{OCA}=\widehat{CHF}+\widehat{CAO}=90^o\Rightarrow\widehat{OCH}=90^o\)
Vậy thì \(\widehat{ECH}=\widehat{ECO}+\widehat{OCH}=180^o\) hay H, C, E thẳng hàng.
a) Xét ΔABC có
BE là đường cao ứng với cạnh AC(gt)
CD là đường cao ứng với cạnh AB(gt)
BE cắt CD tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: AH\(\perp\)BC
mà HM\(\perp\)BC(gt)
và AH,HM có điểm chung là H
nên A,H,M thẳng hàng(đpcm)
b) Xét ΔBMH vuông tại M và ΔBEC vuông tại E có
\(\widehat{EBC}\) chung
Do đó: ΔBMH\(\sim\)ΔBEC(g-g)
Suy ra: \(\dfrac{BM}{BE}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BE\cdot BH=BM\cdot BC\)
Xét ΔCMH vuông tại M và ΔCDB vuông tại D có
\(\widehat{DCB}\) chung
Do đó: ΔCMH\(\sim\)ΔCDB(g-g)
Suy ra: \(\dfrac{CM}{CD}=\dfrac{CH}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CH\cdot CD=CM\cdot CB\)
Ta có: \(BE\cdot BH+CM\cdot CD\)
\(=BM\cdot BC+CM\cdot BC\)
\(=BC^2\)(đpcm)