Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C P O1 P3 P2 P1 O2 O3
Chứng minh:
a) Chứng minh ABP2P3 là hình bình hành.
Xét tứ giác AP3CP có: O3 là trung điểm của hai đường chéo AC và PP3
=> AP3CP là hình bình hành => AP3 //= PC (1)
Xét tứ giác BP2CP có: O2 là trung điểm của hai đường chéo BC và PP2
=> BP2CP là hình bình hành => BP2 //= PC (2)
Từ (1); (2) => AP3 //= BP2
=> ABP2P3 là hình bình hành.
b) Tương tự như trên chúng ta cũng chứng minh được BP1P3C LÀ HÌNH bình hành
=> CP1 cắt BP3 tại trung điểm mỗi đường ,gọi điểm đó là I (3)
ABP2P3 là hình bình hành.
=> AP2 cắt BP3 tại trung điểm mỗi đường (4)
Từ (3); (4) => I là trung điểm AP2
=> 3 Đường thẳng AP2, BP3, CP1 đồng qui.
Bạn xem ở đây nhé.
Câu hỏi của Nguyễn Thị Thùy Dung - Toán lớp 9 | Học trực tuyến
A B C D O M N
c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)
\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)
Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)
d) Áp dụng hệ quả định lí Ta-lét,ta có :
\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)
\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)
\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)
\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)
Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)
Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)
P/S : Bạn xem lại đề để có thể xác định E,F nhé