Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
a, HCDB là hbh (gt)
-> CH // BD; HB // CD
Vì H là trực tâm của Δ ABC (gt)
-> CH vuông với AB ; BH vuông với AC ; AH vuông với BC
-> AB vuông BD ; AC vuông CD
-> ^ABD=90*, ^ ACD=90*
Xét tứ giác ABCD có: ^ABD + ^ ACD = 180*
-> tứ giác ABCD nội tiếp
-> A, B, C, D cùng thuộc 1 đường tròn (1)
DE // BC (gt)
->AH vuông DE ( vì AH vuông BC )
-> ^AED = 90*
Xét tứ giác ABED có ^AED=^ABD=90*
-> B và E cùng nhìn AD dưới 1 góc 90*
-> ABED nội tiếp
-> A,B,E,D cùng thuộc 1 đường tròn (2)
Từ (1) và (2) -> A,B,C,D,E cùng thuộc một đường tròn
b) ABEDC nội tiếp
-> ^BAE = ^BDE (2 góc nội tiếp cùng chắn cung BE)
Và ^DAC = ^DBC (2 góc nội tiếp cùng chắn cung CD)
Mà ^DBC = ^BDE (2 góc sole trong)
-> ^BAE = ^CAD
a) Ta có: BHCD là hình bình hành(gt)
nên CH//BD và BH//CD
mà CH\(\perp\)AB(gt) và BH\(\perp\)AC(gt)
nên BD\(\perp\)AB và CD\(\perp\)AC
Suy ra: B,C nằm trên đường tròn đường kính AD(1)
Ta có: MD//BC(gt)
AM\(\perp\)BC(gt)
Do đó: MD\(\perp\)AM(Định lí 1 từ vuông góc tới song song)
hay M nằm trên đường tròn đường kính AD(2)
Từ (1) và (2) suy ra A,B,C,D,M cùng thuộc 1 đường tròn(Đpcm)
b) Vì BMCD nội tiếp (chứng minh ở câu a) và \(MD\parallel BC\) (đề cho)
\(\Rightarrow BMDC\) là hình thang cân \(\Rightarrow BM=CD\)
c) Vì BHCD là hình bình hành có K là trung điểm BC
\(\Rightarrow\) K là trung điểm HD
Xét \(\Delta ADH\) có O là trung điểm AD (đường kính), K là trung điểm HD
\(\Rightarrow OK\) là đường trung bình \(\Rightarrow OK\parallel AH\) và \(OK=\dfrac{1}{2}AH\)
Vì \(OK\parallel AH\) \(\Rightarrow\dfrac{AH}{OK}=\dfrac{AG}{GK}=2\Rightarrow AG=2GK\Rightarrow\dfrac{AG}{AK}=\dfrac{2}{3}\)
\(\Rightarrow G\) là trọng tâm tam giác ABC
A B C H P M O N K E F S T F' I
a) Xét \(\Delta\)ABC: Trực tâm H => ^BAC + ^BHC = 1800. Tương tự: ^BPC + ^BMC = 1800
Suy ra: ^BAC + ^BHC = ^BPC + ^BMC. Ta có: ^BHC = ^BMC (2 góc nội tiếp cùng chắn cung BC)
=> ^BAC = ^BPC => Tứ giác ABCP nội tiếp => P nằm trên (ABC) hay P thuộc (O) (đpcm)
b) Gọi AO cắt BC tại F'. Ta đi chứng minh F trùng F'. Thật vậy:
Gọi 2 đường cao của tam giác ABC là BT và CS. ST cắt AH tại I.
Tứ giác BSTC nội tiếp => ^ATS = ^ABC => ^ATI = ^ABF'. Dễ thấy: ^TAI = ^BAF'
Suy ra: ^AF'B = ^AIT. Mà HE // AF', ^AIT = ^HIS nên ^HEB = ^HIS => \(\Delta\)HBE ~ \(\Delta\)HSI (g.g)
=> \(\frac{BE}{SI}=\frac{HB}{HS}=\frac{BC}{ST}=\frac{AC}{AS}\). Ta cũng có: \(\Delta\)AF'C ~ \(\Delta\)AIS (g.g) => \(\frac{CF'}{SI}=\frac{AC}{AS}\)
Do đó: \(\frac{BE}{SI}=\frac{CF'}{SI}\)=> BE = CF' . Mà BE = CF nên CF = CF' => F trùng F' => A,F,O thẳng hàng (đpcm).
c) Gọi K là tâm đường tròn ngoại tiếp \(\Delta\)BHC. Dễ thấy O đối xứng với K qua BC => CO=OP=CK (1)
Ta có: Hai đường tròn (N) và (K) có 2 điểm chung là B và M => KN vuông góc BM, kết hợp OK vuông góc BC
=> ^OKN = ^MBC (2 góc có 2 cạnh tương ứng vuông góc). Tương tự thì ^ONK = ^MBA
Mà ^MBC = ^MBA (Do BM là phân giác ^ABC) nên ^OKN = ^ONK => \(\Delta\)NOK cân tại O
Suy ra O nằm trên trung trực của NK và CP (Vì OP=OC)
Mặt khác: NK vuông góc BM. BM lại vuông góc CP (M là trực tâm \(\Delta\)BCP) => NK // CP
Từ đó: Trung trực của NK và CP trùng nhau => Tứ giác PNKC là hình thang cân => CK = PN (2)
Từ (1),(2) => PN = PO (đpcm).
a) Do P là trực tâm tam giác BMC nên M là trực tâm tam giác PBC.
Từ đó ta có \(\widehat{BPC}=180^0-\widehat{BMC}\). Do H là trực tâm tam giác ABC nên \(\widehat{BAC}=180^0-\widehat{BHC}\)
Mà ta lại có \(\widehat{BHC}=\widehat{BMC}\)do tứ giác BHMC nội tiếp.
Do đó ta được \(\widehat{BPC}=180^0-\widehat{BMC}=180^0-\widehat{BHC}=\widehat{BAC}\). Suy ra bốn điểm A,B,C,P cùng thuộc một đường tròn
Vậy P nằm trên (O)
b) Dựng đường kính AK của đường tròn (O). Khi đó dễ dàng chứng minh được tứ giác BHCK là hình bình hành.
Xét \(\Delta BHE\)và \(\Delta CKF\)có BE = CF,\(\widehat{HBE}=\widehat{KCF}\), BH = CK nên \(\Delta BHE=\Delta CKF\left(c-g-c\right)\)
Từ đó ta được \(\widehat{KFC}=\widehat{HEB}\)suy ra HE song song với KF. Lại có AK song song với HE nên ba điểm A, F, K thẳng hàng.
Vậy ba điểm A, F, O thẳng hàng (đpcm)
c) Gọi I là tâm đường tròn ngoại tiếp tam giác BHC. Ta có \(\Delta BHC=\Delta CKB\) nên bán kính đường tròn ngoại tiếp tam giác BHC bằng bán kính đường tròn ngoại tiếp tam giác BKB. Từ đó ta suy ra được OB = OC = IB = IC. Chú ý rằng ON là đường trung trực của AB và OI là đường trung trực của BC, IN là đường trung trực của BM nên ta suy ra được \(\widehat{ONI}=\widehat{ABM}\)và \(\widehat{OIN}=\widehat{MBC}\)
Từ đó dẫn đến \(\widehat{ABM}=\widehat{MBC}=\frac{1}{2}\widehat{ABC}\)nên \(\widehat{OIN}=\widehat{ONI}=\frac{1}{2}\widehat{ABC}\)hay tam giác OIN cân tại O, đồng thời ta có \(\widehat{NOI}=180^0-2\widehat{NIO}=180^0-\widehat{ABC}\)
Lại có \(\widehat{POB}=2\widehat{PCB}=2\left(90^0-\widehat{MBC}\right)=180^0-2\widehat{MBC}=180^0-\widehat{ABC}\)
Từ đó ta được \(\widehat{NOI}=\widehat{POB}\)nên suy ra \(\widehat{NOP}=\widehat{IOB}\)
Hai tam giác OBI và OPN có \(OI=ON,\widehat{NOP}=\widehat{IOB},OB=ON\)nên \(\Delta OBI=\Delta POB\)
Mà tam giác OBO cân tại B nên tam giác OPN cân tại P. Từ đó suy ra PN = PO