K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

a) Xét tam giac ANM và tam giác CNK có:
AN=NC(gt)
góc MNA= goc CNK (đối đỉnh)
MN=NK(gt)

=> tam giác ANM=tam giác CNK (c.g.c)
b) Từ Tam giác ANM= tám giác CNK (CM câu a)
=> góc MAN= góc NCK
=> AM song song vs CK ( co 2 góc SLT bằng nhau)
Từ Tam giác ANM= tám giác CNK (CM câu a)
=> AM=CK
Mà AM=MB(trung điểm M)
=> BM=CK(đpcm)
c) Bạn Vẽ Q la trung điểm của BC
Sau chứng minh tam giác MQN= tam giac MQB
=> MN=BQ
mà BQ=1/2 BC 
=> MN=1/2BC (đpcm)

11 tháng 12 2017

a) Xét tam giac ANM và tam giác CNK có:
AN=NC(gt)
góc MNA= goc CNK (đối đỉnh)
MN=NK(gt)
=> tam giác ANM=tam giác CNK (c.g.c)
b) Từ Tam giác ANM= tám giác CNK (CM câu a)
=> góc MAN= góc NCK
=> AM song song vs CK ( co 2 góc SLT bằng nhau)
Từ Tam giác ANM= tám giác CNK (CM câu a)
=> AM=CK
Mà AM=MB(trung điểm M)
=> BM=CK(đpcm)
c) Bạn Vẽ Q la trung điểm của BC
Sau chứng minh tam giác MQN= tam giac MQB
=> MN=BQ
mà BQ=1/2 BC
=> MN=1/2BC (đpcm)

chúc bn hok totí @_@

28 tháng 5 2017

a) Ta có: AC vừa là trung tuyến vừa là đường cao của tam giác CBD

=> Tam giác CDB cân tại C

b) Ta có: AM song song với BC(gt) và A là trung điểm của DB

=> M cũng là trung điểm của CD (Định lý về đường trung bình)

c) M là trung điểm của CD (theo câu b) và N là trung điểm của CB(gt)

=> MN là đường trung bình của tam giác CBD => MN // DB

28 tháng 5 2017

\(4.\)- Vì \(\Delta CBD\)cân tại \(C\)(cmt)  \(\Rightarrow\) \(CA\)là tia phân giác \(\widehat{BCD}\)
                                                         \(\Rightarrow\) \(\widehat{BCD}=2.\widehat{BCA}=2.30^0=60^0\)
- Xét \(\Delta BCA\)vuông tại \(A\) \(\Rightarrow\) \(\widehat{ABC}+\widehat{BCA}=90^0\)                   
                                              \(\Rightarrow\)\(\widehat{ABC}=90^0-\widehat{BCA}=90^0-30^0=60^0\)
- Xét \(\Delta CBD\)có \(\widehat{BCD}=60^0;\)\(\widehat{ABC}=60^0\) \(\Rightarrow\) \(\Delta CBD\)đều
- Xét  \(\Delta CBD\)đều  có:
  \(\cdot\) \(M\)là trung điểm của \(DC\) (cmt)   suy ra  \(BM\) là đường trung tuyến của \(DC\)
  \(\cdot\) \(A\) là trung điểm của \(DB\) (gt)      suy ra  \(CA\) là đường trung tuyến của \(DB\)
mà   \(BM\)cắt \(CA\) tại \(G\)  (gt)  suy ra \(G\)là trọng tâm của \(\Delta CBD\)
     nên  \(BG=2.GM=2.3=6\left(cm\right)\)
- Vì    \(\Delta CBD\)đều nên \(BM=CA\)suy ra \(GA=GM=3cm\)
- Xét \(\Delta ABG\) vuông tại \(A\)theo định lý Py-ta-go,
   ta được:           \(AB^2=BG^2-AG^2=6^2-3^2=27\)(cm)
                \(\Rightarrow\)  \(AB=\sqrt{27}\)       

 

4 tháng 2 2019

tu ke hinh : 

a, xet tamgiac MHB va tamgiac MKC co : HM = MK (gt)

CM = MB do M la trung diem cua BC(gt)

goc HMB = goc KMC (doi dinh)

=> tamgiac MHB = tamgiac MKC  (c - g - c)

xet tamgiac HMC va tamgiac KMB co : HM = MK (gt)

goc HMC = goc KMB (doi dinh)

MC = MB (cmt)

=> tamgiac HMC = tamgiac KMB (c - g - c)

=> goc CHM = goc MKB 

ma goc CHM = 90 do MH | AC (gt)

=> goc MKB = 90 

b, MH | AC (gt)

tamgiac ABC vuong tai A (gt) => AB | AC (dn)

2 duong thang nay phan biet

=> HK // AB (dl)

MH | AB (gt) 

goc MKB = 90 (cau a) => MK | KB 

2 duong thang nay phan biet

=> AC // KB (dl)

goc AHB so le trong HBK 

=> goc AHB = goc HBK (tc)

xet tamgiac AHB va tamgiac KBH co : HB chung

goc HAB = 90 = goc HKB do. ...

=> tamgiac AHB = tamgiac KBH (ch - gn)

=> AH = KB (dn)

c,  tamgiac HMC = tamgiac KMB  (Cau a) => CH = KB 

AH = KB (Cau b)

=> CH = HA 

xet tamgiacHMC va tamgiac HMA co :  HM chung

goc CHM = goc MHA do HM | AC (gt)

=>  tamgiacHMC = tamgiac HMA (2cgv)

=> MC = MA (dn)

=> tamgiac MCA can tai M (dn)

a) xét tam giác MHC và tam giác HKB có

MK=MH (GT)

BM=MC(GT)

GÓC M1=GÓC M2 (đối đỉnh)

suy ra tam giác MHC bằng tam giác HKB (c-g-c)

do tam giác MHC bằng tam giác HKB nên góc H bằng góc K= 90 độ

suy ra góc HKB bằng 90độ

4 tháng 5 2016

a)Xét tam giác ABD và tam giác AED

AB=AE(Gt)

BAD=DAE(vì AD là tia p/giác)

AD là cạnh chung)

\(\Rightarrow\) tam giác ABD=tam giác AED(c.g.c)

b)Xét tam giác ADF và tam giác ADC

AF+AC(Gt)

BAD=DAE(vì AD là tia p/giác)

AD là cạnh chung

\(\Rightarrow\)tam giác ADF=tam giác ADC(c.g.c)

\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)

c)Xét tam giác AMF và tam giác AMC

AF+AC(Gt)

BAD=DAE(vì AD là tia p/giác)

AD là cạnh chung

\(\Rightarrow\)tam giác AMF=tam giác AMC(c.g.c)

\(\Rightarrow\)AMF=AMC(cặp góc tương ứng)
Mà AMF+AMC=1800(kề bù)

\(\Rightarrow\)AMF=AMC=1800:2=900

Do đó Am vuông góc với CF

 

 

 

5 tháng 5 2016

a)XÉT ▲ABD VÀ ▲AED CÓ:

AD CHUNG

AB=AE(GT)

GÓC BAD= GÓC EAD (AD LÀ PHÂN GIÁC)

=> ▲ABD= ▲AED(C-G-C)