Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tgABE và tgACF có:
góc AEB = góc CFA = 90o
góc BAC chung
Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)
=> AB/AC = AE/AF (các cặp cạnh tương ứng)
=> AB.AF = AC.AE
a: XétΔAMB vuông tại M và ΔANC vuông tại N có
góc A chung
Do đó: ΔAMB\(\sim\)ΔANC
b: Ta có: ΔANH vuông tại N
mà NI là đường trung tuyến
nên NI=AH/2(1)
Ta có: ΔAMH vuông tại M
mà MI là đường trung tuyến
nên MI=AH/2(2)
Từ (1) và (2) suy ra NI=MI(3)
Ta có: ΔNBC vuông tại N
mà NK là đường trung tuyến
nên NK=BC/2(4)
Ta có: ΔMBC vuông tại M
mà MK là đường trung tuyến
nên MK=BC/2(5)
Từ (4), (5) suy ra NK=MK(6)
Từ (3) và (6) suy ra IK là đường trung trực của MN
a: Xét ΔBHI vuông tại H và ΔAKI vuông tại K có
góc BIH=góc AIK
=>ΔBHI đồng dạng vói ΔAKI
=>IB*IK=IA*IH
b: góc BHA=góc BKA=90 độ
=>BHKA nội tiếp
=>góc BAH=góc BKH
a: HC vuông góc AI
IH vuông góc HM
=>góc AIH=góc MHC(1)
góc IAH=90 độ-góc ABD
góc HCM=90 độ-góc FBC
=>góc IAH=góc HCM(2)
Từ (1), (2) suy ra ΔAHI đồng dạng với ΔCMH
b: Kẻ CG//IK(G thuộc AB), CG cắt AD tại N
=>HM vuông góc CN
=>M là trựctâm của ΔHCN
=>NM vuông góc CH
=>NM//AB
=>NM//BG
=>N là trung điểm của CG
IK//GC
=>IH/GN=HK/NC
mà GN=NC
nên IH=HK
=>H là trung điểm của IK