\(\dfrac{a}{sinA}=\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Bạn tự vẽ hình nhé

a,Kẻ BK vuông góc với AC, đặt BK = h

tam giác ABK có K vuông => sin A = h/c => a/sin A = ac/h (1)

tam giác BKC có K vuông => sin C = h/a => c/sin C = ac/h (2)

Từ (1) và (2) => a/sin A = c/sin C

CMTT có b/sinB = c/sin C

=> dpcm

b, có SABC = (h.b)/2

mà h = a.sinC \(\Rightarrow S_{ABC}=\dfrac{a.sinC.b}{2}\) = \(\dfrac{1}{2}a.b.sinC\)

CMTT có \(S_{ABC}=\dfrac{1}{2}a.c.sinB=\dfrac{1}{2}b.c.sinA\)

=> đpcm

17 tháng 8 2018

đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html

17 tháng 8 2018

bạn ơi mình nhấn không được

7 tháng 11 2017

bạn áp dụng hệ thức lượng trong tam giác vuông nha

7 tháng 11 2017

Phải là áp dụng tỉ số lượng giác của góc nhọn chứ bạn?

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

AH
Akai Haruma
Giáo viên
2 tháng 3 2018

Lời giải:

Đường tròn

Kéo dài $OA$ cắt $(O)$ tại $D$

Do $AD$ là đường kính nên $ABD$ vuông tại $B$

\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)

Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)

Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)

Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)

24 tháng 7 2018

A B C c b a m D E F

a) Kẻ các đường cao \(AD;BE;CF\)

ta có : \(AD=AB.sinB\)\(AD=AC.sinC\)

\(\Rightarrow AB.sinB=AC.sinC\Leftrightarrow c.sinB=b.sinC\Leftrightarrow\dfrac{c}{sinC}=\dfrac{b}{sinB}\)

làm tương tự ta có : \(\dfrac{b}{sinB}=\dfrac{a}{sinA}\)\(\dfrac{a}{sinA}=\dfrac{c}{sinC}\)

\(\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\left(đpcm\right)\)

b) ta có : \(BC^2=BE^2+EC^2=AB^2-AE^2+\left(AC-AE\right)^2\)

\(\Leftrightarrow BC=AB^2-AE^2+AC^2-2AC.AE+AE^2\)

\(\Leftrightarrow BC^2=AB^2+AC^2-2AC.AB.cosA\)

\(\Leftrightarrow a^2=b^2+c^2-2bc.cosA\left(đpcm\right)\)

c) ta có : \(AB=BF+FA=BC.cosB+AC.cosA\)

\(\Leftrightarrow c=a.cosB+b.cosA\left(đpcm\right)\)

24 tháng 7 2018

đặc \(M\) là chân đường trung tuyên kẻ từ \(A\) \(\left(m_a\right)\)

ta có : \(AM^2=AB^2+BM^2-2AB.BM.cosB\)

\(\Leftrightarrow AM^2=AB^2+BM^2-2AB.BM\dfrac{AB^2+BC^2-AC^2}{2AB.2BM}\)

\(\Leftrightarrow AM^2=AB^2+\left(\dfrac{BC}{2}\right)^2-\dfrac{AB^2+BC^2-AC^2}{2}\)

\(\Leftrightarrow AM^2=AB^2-\dfrac{AB^2+BC^2-AC^2}{2}+\dfrac{BC^2}{4}\)

\(\Leftrightarrow AM^2=\dfrac{2AB^2-AB^2-BC^2+AC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{2}+\dfrac{BC^2}{4}\) \(\Leftrightarrow AM^2=\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}\Leftrightarrow m_a^2=\dfrac{c^2+b^2}{2}-\dfrac{a^2}{4}\left(đpcm\right)\)

(chú ý câu này sử dụng công thức ở câu \(b;c\) nha)

9 tháng 6 2018

a, ( Định lý Sin)

b, Áp dụng T/C tỉ lệ thức

Xảy ra \(\Leftrightarrow a=b+c\)

Bài 2: 

Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)

Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)

\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)

30 tháng 10 2022

a: 

Xét tứ giác BLKC có góc BLC=góc BKC=90 độ

nên BLKC là tứ giác nội tiếp

=>góc ALK=góc ACB

=>ΔALK đồng dạng với ΔACB

=>AL/AC=AK/AB=LK/BC

 

\(\left(\dfrac{AK}{AB}\right)^2=\dfrac{AK}{AB}\cdot\dfrac{AK}{AB}=\dfrac{AL}{AC}\cdot\dfrac{BK}{BC}\)

b: \(\dfrac{S_{AKL}}{S_{ABC}}=\left(\dfrac{AK}{AB}\right)^2=\dfrac{AL\cdot BK}{AC\cdot BC}\)

9 tháng 2 2019

Rối hình đừng hỏi, vì mình vẽ hình ra nháp nó đã rối sẵn rồi :)Violympic toán 9

Kẻ đường kính AD, BE, CF

\(\Delta ABD\) có: \(\hat{ABD}=90^o\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\)\(\sin\hat{ADB}\)\(=\dfrac{AB}{AD}\)(tỉ số lượng giác) mà \(\hat{ACB}=\hat{ADB}\)(cùng chắn \(\stackrel\frown{AB}\)) \(\Rightarrow\)\(\sin\hat{ACB}\)\(=\dfrac{AB}{AD}\)\(\Rightarrow2R=\)\(AB\over\sin\hat{ACB}\)

Chứng minh tương tự với \(\Delta BCE,\Delta CAF\)\(\Rightarrow2R=\)\(BC\over\sin\hat{BAC}\)\(=\)\(AC\over\sin\hat{ABC}\)

Từ 2 điều trên ta được điều phải chứng minh

b, Ta có: \(\hat{ACD}=90^o\)(góc nội tiếp chắn nửa đường tròn)\(\Rightarrow\left\{{}\begin{matrix}AC\perp CD\\AC\perp BK\left(gt\right)\end{matrix}\right.\Rightarrow\)BK//CD\(\Leftrightarrow\)BH//CD

Chứng minh tương tự ta có: CH // BD (cùng vuông góc với AB)

Tứ giác BHCD có: BH // CD, CH // BD (cmt) nên là hình bình hành có 2 đường chéo HD và BC cắt nhau tại trung điểm I của BC nên H, I, D thẳng hàng

9 tháng 2 2019

À lộn, \(\Delta BCE,\Delta BCF\) nhé