Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M N D 1 2 1 2
Cm: a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
AH : chung
BH = CH (gt)
=> t/giác ABH = t/giác ACH (c.c.c)
Ta có: t/giác ABH = t/giác ACH (cmt)
=> \(\widehat{H_1}=\widehat{H_2}\) (2 góc t/ứng)
Mà \(\widehat{H_1}+\widehat{H_2}=180^0\) (kề bù)
=> \(\widehat{H_1}=\widehat{H_2}=90^0\) => t.giác AHB là t/giác vuông
c) Xét t/giác AHB và t/giác DHC
có AH = HD (gt)
BH = CH (gt)
\(\widehat{AHB}=\widehat{CHD}\) (đối đỉnh)
=> t/giác AHB = t/giác DHC (c.g.c)
=> \(\widehat{BAH}=\widehat{HDC}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD
d) Xét t/giác ABM và t/giác CNM
có: AM = MC (gt)
BM = MN (gt)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
=> t.giác ABM = t/giác CNM (c.g.c)
=> AB = CN (2 cạnh tứng)
Mà AB = CD (vì t/giác ABH = t/giác DCH)
=> DC = CN => C là trung điểm của BN
a) xét \(\Delta\)ABH và\(\Delta\)AHC có:AH chung. BH=HC.AB=AC=>bằng nhau ccc=>góc AHC =góc AHB
mà AHB + AHC =180 độ => góc AHB=AHC=90độ (đpcm)
b)ta thấy góc ABC+CBD=180độ;góc ACB+BCE=180độ=>góc CBD=BCE(kề bù vs 2 góc băng nhau)
xét \(\Delta\)DBC và\(\Delta\)BCE có :BD=CE,góc CBD=BCE,BC chung =>góc D= E,góc DCB=DBC=>góc DBK=ECK(vì góc DBC=ECB)
xét \(\Delta\)DBK và EKC có góc D=E,BD=CE,góc DBK=ECK=>bằng nhau gcg
A B C M H 5 5 8
a) Xét ΔAHB và ΔAHC có :
\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân tại A)
AB = AC (ΔABC cân tại A)
\(\widehat{AHB}=\widehat{AHC}\left(=90độ\right)\)
Suy ra : ΔAHB = ΔAHC (ch - gn)
Ta có đpcm
b) Từ câu a có :
ΔAHB = ΔAHC (ch - gn)
=>BH = HC (2 cạnh tương ứng)
=> \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét ΔACH cân tại H (AH ⊥BC) có :
Áp dụng định lí PY - TA - GO :
\(AH^2=AB^2-BH^2\)
=> \(AH^2=5^2-4^2=9\)
=> \(AH=\sqrt{9}=3\left(cm\right)\)
Ta có đct
c) Xét ΔABH và ΔMBH có :
\(AH=MH\left(gt\right)\)
\(\widehat{AHB}=\widehat{MHB}\left(=90độ\right)\)
BH : cạnh chung
=> ΔABH = ΔMBH (c-g-c)
=> AB = BM (2 cạnh tương ứng)
Do đó : ΔABM cân tại B
Ta có đpcm
d)Xét ΔACH và ΔMBH có :
\(AC=BM\left(=AB\right)\)
BH = HC (chứng minh trên)
AH = HM (gt)
=> ΔACH = ΔMBH (c.c.c)
=> \(\widehat{HAC}=\widehat{HMB}\) (2 góc tương ứng)
Mặt khác, thấy : 2 góc này ở vị trí so le trong
Suy ra : BM // AC
Ta có đpcm
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(AHB\) và \(AHC\) có:
\(AB=AC\left(gt\right)\)
\(HB=HC\) (vì H là trung điểm của \(BC\))
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\left(c-c-c\right).\)
b) Xét 2 \(\Delta\) \(ABH\) và \(DCH\) có:
\(AH=DH\left(gt\right)\)
\(\widehat{AHB}=\widehat{DHC}\) (vì 2 góc đối đỉnh)
\(BH=CH\) (vì H là trung điểm của \(BC\))
=> \(\Delta ABH=\Delta DCH\left(c-g-c\right)\)
=> \(\widehat{ABH}=\widehat{DCH}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD.\)
Chúc bạn học tốt!
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....
sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo
a) Vì tam giác ABC cân tại A
=> AB = AC và Góc ABC = Góc ACB
Xét tam giác AHC và tam giác AHB, ta có:
Góc AHB = AHC ( = 90 độ )
AB = AC (cmt)
Góc ABC = Góc ACB ( cmt)
=> Tam giác AHC = Tam giác AHB ( ch-gn )
b) Vì tam giác AHC = Tam giác AHB ( câu a )
=> BH = HC ( Hai cạnh tương ứng )
Xét tam giác BHN và tam giác CHM, ta có:
BH = HC ( cmt )
Góc BHN = Góc CHM ( Hai góc đối đỉnh )
HN = HM ( gt )
=> Tam giác BHN = Tam giác CHM ( c-g-c )
=> Góc HMC = Góc BNH ( Hai góc tương ứng )
Mà góc HMC và góc BNH là hai góc so le trong
=> BN // AC
c) Xét tam giác MHC và tam giác QHB, ta có:
Góc HMC = Góc HQB ( = 90 độ )
Góc MCH = Góc QBH ( do tam giác ABC cân tại A )
HC = HB ( câu b )
=> Tam giác MHC = Tam giác QHB ( ch-gn )
=> Góc MHC = Góc QHB
Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )
=> Góc QHB = Góc BHN
Xét tam giác AQH và tam giác AMH, ta có:
Góc AQH = Góc AMH ( = 90 độ )
AH là cạnh huyền chung
Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )
=> Tam giác AQH = Tam giác AMH ( ch-gn )
=> QH = HM ( Hai cạnh tương ứng )
Mà HM = HN ( gt )
=> QH = HN
Gọi K là trung điểm của QN
Xét tam giác KHQ và tam giác KHN, ta có:
HQ = HN ( cmt )
Góc QHB = Góc BHN ( cmt )
HK là cạnh chung
=> Tam giác KHQ = Tam giác KHN ( c-g-c )
=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )
Mà góc QKH và góc NKH là hai góc kề bù
=> Góc QKH = Góc NKH = 180/2 = 90 độ
=> HK là đường trung trực của QN
Hay BC là đường trung trực của QN
( hình vẽ và GTKL tự làm)
a) xét \(\Delta ABH\)và\(\Delta ACH\)có :
\(AB=AC\)\(\left(GT\right)\)
\(BH=CH\left(GT\right)\)\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)
\(AH\)\(chung\)
b) Ta có \(AHB=AHC\)( 2 góc tương ứng )
.Mà \(AHB+AHC=180\)O
\(\Rightarrow AHB=AHC=90\)O
\(\Rightarrow AH\perp BC\)
C) Xét 2 \(\Delta AHB\)và\(KHC\)có :
\(BH=CH\)\(\left(GT\right)\)
\(KH=AH\left(GT\right)\)
\(BHA=CHK\)( ĐỐI ĐỈNH )
\(\Rightarrow\Delta AHB=\Delta KHC\left(c.g.c\right)\)
\(\Rightarrow ABH=KCH\)( 2 góc tương ứng )
Mà 2 góc này so le trong
\(\Rightarrow CK//AB\)
\(a,\left\{{}\begin{matrix}AB=AC\\BH=HC\\AH\text{ chung}\end{matrix}\right.\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\\ \Rightarrow\widehat{AHB}=\widehat{AHC}\\ \text{Mà }\widehat{AHB}+\widehat{AHC}=180^0\\ \Rightarrow\widehat{AHB}=\widehat{AHC}=90^0\\ \Rightarrow AH\perp BC\\ b,\left\{{}\begin{matrix}HM=HA\\\widehat{AHB}=\widehat{MHC}\left(đđ\right)\\BH=HC\end{matrix}\right.\Rightarrow\Delta AHB=\Delta MHC\left(c.g.c\right)\\ \Rightarrow\widehat{HBA}=\widehat{HCM}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}MC\)