Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Diệp Song Thiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo link này nhé!
\({}\)
a) Vì \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BEFC nội tiếp đường tròn đường kính BC. Tương tự như thế, tứ giác AEDB nội tiếp đường tròn đường kính AB. Cũng có \(\widehat{AEH}=\widehat{AFH}=90^o\) nên tứ giác AEHF nội tiếp đường tròn đường kính AH.
Ta có \(\widehat{IEM}=\widehat{IEB}+\widehat{BEM}\)
\(=\left(90^o-\widehat{IEA}\right)+\widehat{EBC}\)
\(=90^o-\widehat{EAD}+\widehat{EBD}=90^o\) (do \(\widehat{EBD}=\widehat{EAD}\))
Vậy \(IE\perp ME\)
b) Dễ thấy các điểm I, D, E, F, M, K cùng thuộc đường tròn đường kính IM. Gọi J là trung điểm AI thì I chính là tâm của đường tròn (AIK) nên (J) tiếp xúc với (I) tại A. Dẫn đến A nằm trên trục đẳng phương của (I) và (J)
Mặt khác, ta có \(SK.SI=SE.SF\) nên \(P_{S/\left(I\right)}=P_{S/\left(J\right)}\) hay S nằm trên trục đẳng phương của (I) và (J). Suy ra AS là trục đẳng phương của (I) và (J). \(\Rightarrow\)\(AS\perp IJ\) hay AS//BC (đpcm).
c) Ta thấy tứ giác AKEP nội tiếp đường tròn AP
\(\Rightarrow\widehat{APB}=\widehat{MKE}=\widehat{MDE}=\widehat{BAC}\)
\(\Rightarrow\Delta BAE~\Delta BPA\left(g.g\right)\Rightarrow\widehat{BAP}=\widehat{BEA}=90^o\)
\(\Rightarrow\) AP//QH \(\left(\perp AB\right)\)
\(\Rightarrow\widehat{IAP}=\widehat{IHQ}\) (2 góc so le trong)
Từ đó dễ dàng chứng minh \(\Delta IAP=\Delta IHQ\left(g.c.g\right)\) \(\Rightarrow IP=IQ\) hay I là trung điểm PQ (đpcm)
Giải chi tiết:
a) Chứng minh tứ giác AEHF và BCEF nội tiếp.
Ta có ∠AEH=∠AFH=90o⇒∠AEH=∠AFH=90o⇒ E, F thuộc đường tròn đường kính AH
⇒⇒ A, E, H, F cùng thuộc một đường tròn
⇒AEHF⇒AEHF là tứ giác nội tiếp (dhnb).
Ta có ∠BEC=∠BFC=90o⇒∠BEC=∠BFC=90o⇒ BCEF là tứ giác nội tiếp (dhnb)
b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O)(O)(D là tiếp điểm, D thuộc cung nhỏ BC). Chứng minh ID2=IB.ICID2=IB.IC.
Xét ΔIBDΔIBD và ΔIDCΔIDC có:
∠I∠I chung
∠IDB=∠ICD∠IDB=∠ICD (ID là tiếp tuyến của (O)(O))
⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).
c) DE, DF cắt đường tròn (O)(O) tại M và N. Chứng minh NM // EF.
Xét ΔIBEΔIBE và ΔIFCΔIFC có:
∠I∠I chung
∠IEB=∠ICF∠IEB=∠ICF (BCEF là tứ giác nội tiếp)
⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF (kết hợp b)
⇒ID2=IE.IF⇒IDIE=IFID⇒ID2=IE.IF⇒IDIE=IFID
Xét ΔIDFΔIDF và ΔIEDΔIED có:
∠I∠I chung
IDIE=IFID(cmt)IDIE=IFID(cmt)
⇒ΔIDF∼ΔIED⇒∠IDF=∠IED⇒ΔIDF∼ΔIED⇒∠IDF=∠IED (2 góc tương ứng)
Mặt khác ∠IDF=∠NMD∠IDF=∠NMD (ID là tiếp tuyến của (O)(O)) ⇒∠IED=∠NMD⇒∠IED=∠NMD (tc)
Mà hai góc này ở vị trí đồng vị ⇒⇒ NM // EF.
Em đã học tứ giác nội tiếp chưa? Nếu học rồi áp dụng nó sẽ nhanh hơn.
A B C H D E F I N M O
Gọi H là trực tâm tam giác ABC.
+) Ta có: AM//NH ( cùng vuông góc với AB)
AN// MH ( cùng vuông góc với AC)
=> AMHN là hình bình hành
Gọi O là giao điểm của AH và MN
=> O là trung điểm AH
+) Xét tứ giác BFHD có: \(\widehat{FBD}+\widehat{FHD}+\widehat{BFH}+\widehat{BDH}=360^o\)
=> \(\widehat{FBD}+\widehat{FHD}+90^o+90^o=360^o\)
=> \(\widehat{FBD}+\widehat{FHD}=180^o\)
Mà \(\widehat{FHD}+\widehat{FHA}=180^o\)( kề bù)
=> \(\widehat{FBD}=\widehat{FHA}\)
Mặt khác\(\widehat{FHA}=\widehat{HAM}\) ( so le trong)
=> \(\widehat{FBD}=\widehat{HAM}\)
=> \(\widehat{ABC}=\widehat{HAM}\)(1)
Xét tứ giác HDCE có:
\(\widehat{DCE}+\widehat{DHE}+\widehat{HDC}+\widehat{HEC}=360^o\)
=> \(\widehat{DCE}+\widehat{DHE}+90^o+90^o=360^o\)
=> \(\widehat{DCE}+\widehat{DHE}=180^o\)
Mà \(\widehat{AHM}+\widehat{EHD}=180^o\)( kề bù)
=> \(\widehat{AHM}=\widehat{DCE}\Rightarrow\widehat{AHM}=\widehat{ACB}\)(2)
Từ (1), (2) => Tam giác MAH ~ Tam giác ABC
=> \(\frac{MA}{AH}=\frac{AB}{BC}\Rightarrow\frac{MA}{2.AO}=\frac{AB}{2BI}\Rightarrow\frac{MA}{AO}=\frac{AB}{AI}\)(3)
Từ (1), (3)=> Tam giác MAO ~ tam giác ABI
=> \(\widehat{OMA}=\widehat{IAB}\)
Ta lại có: \(\widehat{IAB}+\widehat{IAM}=\widehat{BAM}=90^o\)
=> \(\widehat{OMA}+\widehat{IAM}=90^o\)
Gọi K là giao điểm của MN và AI
=> \(\widehat{KMA}+\widehat{KAM}=90^o\)
=> \(\widehat{AKM}=90^o\)
=> AI vuông MN
cái chỗ \(\frac{MA}{2AO}\)= \(\frac{AB}{2BI}\)\(\Rightarrow\frac{MA}{AO}=\frac{AB}{AI}\)
Nhg \(\frac{MA}{2AO}\) = \(\frac{AB}{2BI}\)\(\Rightarrow\frac{MA}{AO}=\frac{AB}{BI}\)
#MÃ MÃ#