Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A E C B D a) Theo bài ra ta có:\(\frac{AE}{EC}=\frac{3}{4}\)=> \(\frac{AE}{EC+AE}=\frac{3}{4+3}\Rightarrow\frac{AE}{AC}=\frac{3}{7}\)
Xét ΔABC có DE//BC => \(\frac{DE}{BC}=\frac{AE}{AC}=\frac{3}{7}\) (hệ quả đ/lí Ta-lét)
=> DE = \(\frac{3}{7}BC=\frac{3}{7}.28=12\left(cm\right)\)
b) Xét ΔABC có DE//BC => \(\frac{AD}{BD}=\frac{AE}{EC}\) (đ/lí Ta-lét)
Mà \(\frac{AD}{BD}=\frac{EC}{AE}\left(gt\right)\) => \(\frac{AE}{EC}=\frac{EC}{AE}\) (=\(\frac{AD}{BD}\))
=>AE2=EC2 => AE = EC
=> E là trung điểm của AC.
Xét ΔABC có: DE//BC ; E là trung điểm của AC (cmt)
=> D là trung điểm của AB
Chúc bạn học tốt!
tự vẽ hình nha
a) Vì DM là tia phân giác của góc AMB nên góc M\(_2\) =góc \(\frac{AMB}{2}\) (1)
Vì ME là tia phân giác của góc AMC nên góc M\(_3\)= góc \(\frac{AMC}{2}\) (2)
Từ (1) và (2) => góc DME = góc M\(_2\)+góc M\(_3\) = góc \(\frac{AMB}{2}\)+ góc \(\frac{AMC}{2}\)
= góc \(\frac{AMB+AMC}{2}\)= góc \(\frac{BMC}{2}\) =\(\frac{180^0}{2}\)
= 90\(^0\)
Vậy tam giác DME vuông tại M (đpcm)