Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình Tự Vẽ
Xét \(\Delta AEC\)và \(\Delta ADB\)có :\(\widehat{A}\)chung :\(\widehat{E}\)=\(\widehat{D}\)\(\Rightarrow\)\(\Delta AEC\)\(\approx\)\(\Delta ADB\)\(\Rightarrow\)\(\widehat{ABD}\)=\(\widehat{ACE}\)
Xét \(\Delta HDC\)và \(\Delta HEB\)có : \(\widehat{D}\)=\(\widehat{C}\); \(\widehat{HCD}\)=\(\widehat{HBE}\)\(\Rightarrow\)\(\Delta HDC\)\(\approx\)\(\Delta HEB\)\(\Rightarrow\)\(\frac{HB}{HC}\)= \(\frac{HE}{HD}\)\(\Rightarrow\)HB.HD=HC.HE
a) Xét tam giác ADB và tam giác AEC có:
Chung DAB; 2 góc vuông ADB=AEC=90 độ (có 2 đường cao BD, CE lần lượt hạ từ B; C xuống)
=> Đồng dạng theo TH gg
b; c) Có: BEC=BDC=90 độ
=> Tứ giác BCDE nội tiếp
=> góc HDE= góc ECB (tính chất)
=> tam giác HDE đồng dạng tam giác HCB (gg)
=> \(\frac{HD}{HE}=\frac{HC}{HB}\)
=> \(HD.HB=HC.HE\)(ĐPCM)
d) Xét tứ giác ADHE có: góc ADH=góc AEH=90 độ
=> góc ADH + góc AEH=90+90=180 độ
=> Tứ giác ADHE nội tiếp
=> góc AHD=góc AED (tính chất) (*)
Có tứ giác BCDE nội tiếp (cmt) => góc AED=góc ACB (tính chất) (**)
Từ (*) và (**) => góc ACB=góc AHD.
=> Tam giác DHA đồng dạng tam giác DCB (gg) khi có \(\hept{\begin{cases}ACB=AHD\left(cmt\right)\\ADH=BCD=90\end{cases}}\)
=> \(\frac{DH}{DA}=\frac{DC}{DB}\)
=> \(DH.DB=DA.DC\)(ĐPCM)
e) Đề bài sai nhé (CM đồng dạng chứ ko phải là CM bằng nhau)
Có: góc AED=góc ACB (cmt)
Và có chung góc DAE
=> Tam giác ADE đồng dạng tam giác ACB (gg)
=> ĐPCM
a: Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó:ΔEHB\(\sim\)ΔDHC
b: Ta có: ΔEHB\(\sim\)ΔDHC
nên HE/HD=HB/HC
=>HE/HB=HD/HC
Xét ΔHED và ΔHBC có
HE/HB=HD/HC
\(\widehat{EHD}=\widehat{BHC}\)
Do đó: ΔHED\(\sim\)ΔHBC
c: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
DO đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc EAD chung
DO đó: ΔADE\(\sim\)ΔABC
B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm
bạn tự làm câu a,b,c nhá.
d,Xét tam giác ABD và tam giác ACE có:
Chung góc A
góc ADB=góc AEC(=90 độ)
suy ra tam giác ABC đồng dạng tam giác ACE(g.g)
suy ra
AB/AC=AD/AE(đ/n 2 tam giác đồng dạng)
suy ra AB.AE=AC.AD(dieu phai cm)
e.Kẻ AH vuông góc với BC tại I
Xét BIH và BCD có:(mk viết tắt Tam giác nha)
Chung góc B
góc I=góc D(=90 độ)
suy ra BHI đồng dạng BCD(g.g)
suy ra HB/BC=BI/BD(đ/n 2 tam giác đồng dạng)
suy ra BH.BD=BC.BI (1)
tương tự xét CHI đồng dạng CBE(chung goc C;goc I=gocE=90 độ)
suy ra CH.CE=BC.IC (2)
từ (1) và (2) suy raBH.BD+CH.CE=BC.BI+BC.IC
=BC.(BI+IC)
=BC.BC
=BC2
Vậy BH.BD+CH.CE=BC2.
a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{BAC}\) chung
suy ra: \(\Delta ABD~\Delta ACE\) (g.g)
\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)
\(\Rightarrow\)\(AB.AE=AC.AD\)
b) \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)
\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)
Xét \(\Delta AED\)và \(\Delta ACB\)có:
\(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)
\(\widehat{EAD}\) chung
suy ra: \(\Delta AED~\Delta ACB\) (g.g)
c) Kẻ \(HK\perp BC\) \(\left(K\in BC\right)\)
C/m: \(\Delta BKH~\Delta BDC\)(g.g) \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)
\(\Delta CKH~\Delta CEB\)(g.g) \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)
Lấy (1) + (2) theo vế ta được: \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(góc nhọn)
b) Ta có: ΔEHB∼ΔDHC(cmt)
\(\Leftrightarrow\frac{HE}{HD}=\frac{HB}{HC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{HE}{HB}=\frac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\frac{HE}{HB}=\frac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
c) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
\(\Leftrightarrow\frac{AD}{AE}=\frac{AB}{AC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(\frac{AD}{AB}=\frac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\frac{AD}{AB}=\frac{AE}{AC}\)(cmt)
\(\widehat{DAE}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)
d) Gọi K là giao điểm của AH và BC
Xét ΔABC có
BD là đường cao ứng với cạnh AC(gt)
CE là đường cao ứng với cạnh AB(gt)
BD\(\cap\)CE={H}
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
⇔AH⊥BC
⇔AK⊥BC(AH\(\cap\)BC={K})
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{DBC}\) chung
Do đó: ΔBKH∼ΔBDC(góc nhọn)
\(\Leftrightarrow\frac{BK}{BD}=\frac{BH}{BC}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(BK\cdot BC=BH\cdot BD\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
\(\widehat{ECB}\) chung
Do đó: ΔCKH∼ΔCEB(g-g)
\(\Leftrightarrow\frac{CK}{CE}=\frac{CH}{CB}\)(hai cặp cạnh tương ứng tỉ lệ)
hay \(CK\cdot CB=CE\cdot CH\)
Ta có: \(BD\cdot BH+CE\cdot CH=BK\cdot BC+CK\cdot BC\)
\(=BC\cdot\left(BK+CK\right)=BC\cdot BC=BC^2\)(đpcm)
Hình tự vẽ nha:))
a) Xét ΔEHB và ΔDHC có:
∠BEH=∠CDH=90o
∠EHB=∠DHC(đối đỉnh)
Do đó, ΔEHB∼ΔDHC (gg).
b) Xét ΔHED và HBC có:
\(\frac{HE}{HB}=\frac{HD}{HC}\)(ΔEHB∼ΔDHC)
∠DHE=∠BHC (đđ)
Do đó,ΔHED∼ΔHBC(cgc)
c) Xét ΔADB và ΔAEC có:
∠A chung
∠ADB=∠AEC=90o
Do đó, ΔADB∼ΔAEC(gg)
Xét ΔAED và ΔABC có:
∠A chung
\(\frac{AD}{AB}=\frac{AE}{AC}\)(ΔADB∼ΔAEC)
Do đó, ΔAED∼ΔABC(cgc)
d) Vẽ HK⊥BC(K∈BC)
ΔBHK∼ΔBDC(gg)⇒\(\frac{BK}{BD}=\frac{BH}{BC}\)⇔BK.BC=BH.BD
ΔCHK∼ΔCBE(gg)⇒\(\frac{CK}{CE}=\frac{CH}{CB}\)⇔CK.BC=CE.CH
⇒BC(BK+CK)=BH.BD+CE.CH
⇔BC2=BH.BD+CE.CH (đpcm)