K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

a/ ΔABD vuông tại D

=> AB > BD (cạnh huyền > cạnh góc vuông) (1)

ΔAEC vuông tại E

=> AC > CE (cạnh huyền > cạnh góc vuông) (2)

Từ (1) và (2) => AB + AC > BD + CE

b/ ΔBDC vuông tại D

=> BC > BD (cạnh huyền > cạnh góc vuông) (3)

ΔBEC vuông tại E

=> BC > CE (cạnh huyền > cạnh góc vuông) (4)

Từ (3) và (4) => BC + BC > BD + CE

=> 2. BC > BD + CE
\(\Rightarrow BC>\frac{1}{2}\left(BD+CE\right)\)

18 tháng 3 2020

xét tam giác zuông ACE zà tam giác zuông ABD có

góc A chúng

góc D = góc E = 90 độ

=> tam giác ACE ~ tam giác BD

=>\(\frac{AC}{AB}=\frac{CE}{BD}=\frac{AC-CE}{AB-BD}\)

do AC<AB =>\(\frac{AC}{AB}< 1\)

=>\(\frac{AC-CE}{AB-BD}< 1\)( do CE=BD ( tam giác ACE ~ tam giác ABD)

=> AC-CE<AB-BD

=>BD-CE<AB-AC

3 tháng 12 2017

a) Xét tam giác vuông ABD và tam giác vuông ACE có
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE(hai cạnh tương ứng)
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác vuông OEB và tam giác vuông ODC có
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC(cạnh góc vuông-góc nhọn kề cạnh) => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC(hai góc tương ứng)
=> AO la tia phân giác góc BAC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔAEC

=>BD=CE

b: góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: AB=AC

HB=HC

=>AH là trung trực của BC

7 tháng 12 2016

1/ Ta có hình vẽ:

x y O A B C D

Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

\(\widehat{O}\): góc chung

\(\begin{cases}OA=OB\\AC=BD\end{cases}\)\(\Rightarrow\)OC = OD

Vậy tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)