K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

a,Xét tam giác BMH và CMK có

+ BM = CM ( GT)

+ BMH=CMK (Hai góc đối đỉnh)

+ MH = MK (GT)

,Do đó tam giác BMH= tam giác CMK (Đpcm)

b,Vì tam giác BMH=tam giác CMK ( chứng minh trên)

nên MBH=MCK (Hai góc tương ứng)

mà 2 góc MBH và MCK ở vị trí so le trong nên BH //CK

lại có BH vuông góc AC (GT)

nên CA vuông góc CK (đpcm)

* Chứng minh được CH = CG

* Chứng minh được CH = BK

Suy ra đpcm

22 tháng 12 2016

2 bước cuối là sao mk ko hỉu ???

27 tháng 2 2019

ai làm nhanh nhất tui tk

13 tháng 7 2020

a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)

=> DM=NE

b) Ta có

\(\Delta MDI\perp D\)=> DMI+MID=90 độ

\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ

mà MID=NEI đối đỉnh

=> DMI=ENI

\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)

=> IM=ỊN

=> BC cắt MN tại I là trung Điểm của MN

c) Gọi H là chân đường zuông góc kẻ từ A xuống BC

=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )

=> góc HAB= góc HAC

Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I

=> tam giác OAB= tam giác OAC (c-g-c)(1)

=> góc OBA = góc OCA ; OC=OB

tam giác OBM= tam giác OCN (c-g-c)

=> góc OBM=góc OCN (2)

từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC

=> O luôn cố đinhkj

=> DPCM

11 tháng 7 2019

#)Giải : (tiếp hơi chậm nhưng k sao :v)

a)Xét \(\Delta DMB\) và \(\Delta ENC\)có :

\(\widehat{MDB}=\widehat{NEC}=90^o\left(gt\right)\)

\(BD=CE\left(gt\right)\)

\(\widehat{B}=\widehat{ACB}\)(\(\Delta ABC\) cân tại A)

Mà \(\widehat{ACB}=\widehat{NCE}\)(hai góc đối đỉnh)

\(\Rightarrow\widehat{B}=\widehat{NCE}\)

\(\Rightarrow\Delta DMB=\Delta ENC\left(c.g.c\right)\)

\(\Rightarrow DM=EN\)(cặp cạnh tương ứng bằng nhau)

b)Ta có : \(MD\perp BC\) và \(NE\perp BC\)

\(\Rightarrow MD//NE\)

\(\Rightarrow\widehat{DMI}=\widehat{INE}\)(cặp góc so le trong bằng nhau)

Xét \(\Delta IMD\) và \(\Delta INE\) có :

\(\widehat{DMI}=\widehat{INE}\left(cmt\right)\)

\(DM=EN\)(cm câu a))

\(\widehat{MDI}=\widehat{NEI}=90^o\left(gt\right)\)

\(\Rightarrow\Delta IMD=\Delta INE\left(g.c.g\right)\)

\(\Rightarrow IM=IN\)(cặp cạnh tương ứng bằng nhau)

\(\Rightarrow\)I là trung điểm của MN

\(\Rightarrowđpcm\)

11 tháng 7 2019

A B C D M I E N

a) Xét tam giác ABC cân tại A

=> \(\widehat{ABC}=\widehat{ACB}\)

mà \(\widehat{ACB}=\widehat{NCE}\) ( đối đỉnh)

=> \(\widehat{ABC}=\widehat{NCE}\) hay \(\widehat{MBD}=\widehat{NCE}\)

Xét tam giác vuông MBD và tam giác vuông NCE có:

\(\widehat{MBD}=\widehat{NCE}\)( chứng minh trên)

CE=BD

=> Tam giác MBD= tam giác NCE

=> DM=EN

b) Gọi I là giao điểm của MN và BC

Xét tam giác vuông DMI và tam giác vuông ENI có:

DM=EN ( theo câu a)

\(\widehat{MID}=\widehat{NIE}\) ( đối đỉnh)

=> Tam giác DMI= Tam giác ENI

=> MI=NI

=> I là trung điểm MN

Vậy đường thẳng BC cắt MN tại trung điểm I của MN

14 tháng 7 2015

a. tam giác ABC cân tại A --> góc ABC= góc ACB

mà góc ABC = góc EBF (đối đỉnh)

---> góc ACB = góc EBF 

Xét tam giác EBF và tam giác DCK

     góc FEB= góc KDC= 90o

    EB=DC (gt)

    góc EBF =góc DCK

---->tam giác EBF = tam giác DCK(g.c.g)

b. có EF//DK ( do cùng vuông góc BC)

----> góc EFK = góc DKF ( so le trong)

Xét tam giác IEF và tam giác IDK

    góc IEF= góc IDK=90o

    EF=DK ( câu a)

    góc EFI = góc DKI

---> tam giác IEF = tam giác IDK( g.c.g)

----> IF=IK

15 tháng 1 2018

A B C I D E H

Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)

=> Tam giác CIE = Tam giác BID (c.g.c)

^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong

=> CE//BD hay BD//CH. Mà BD vuông góc với AB

=> CH vuông góc với AB (Quan hệ //, vg góc) 

=> Tam giác AHC vuông tại H (đpcm).

31 tháng 3 2016

A B C E N I D M O 1 2 2 1 2 3 1 3 1

a) ta có tam giác abc cân tại A suy ra B=C3

C3=C1(2 góc đđ) suy ra B=C1

xét 2 tam giác vuông MBD và NCE

B=C1(cmt)

BD=CE(gt)

D1=E=90 độ

suy ra tam giácMBD=NCE(g.c.g)

suy ra MD=NE

31 tháng 3 2016

b) theo câu a, ta có:MD=NE

I1=I2(2 góc đđ)

DMI=90-I1

ENI=90-I2

suy ra DMI=ENI
xét tam giác MDI và tam giác NIE

MD=NE( theo câu a)

DMI=ENI(cmt)

MDI=NEI=90

suy ra tam giác MDI=NIE(g.c.g)

suy ra IM=IN suy ra I là trung điểm của MN

a ) Xét  ∆BAD và  ∆CAD
AB = AC (  ∆ABC cân )
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{DAC}\)
=>  ∆ABH =  ∆ACH(g.c.g)

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.a) Chứng minh: Tam giác ABM = tam giác ACM.b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.Chứng minh: BH = CK.c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.Chứng minh: Tam giác IBM cân.BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.a) Tính độ dài cạnh AC.b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED...
Đọc tiếp

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh: Tam giác ABM = tam giác ACM.

b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.

Chứng minh: BH = CK.

c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.

Chứng minh: Tam giác IBM cân.

BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.

a) Tính độ dài cạnh AC.

b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.

Chứng minh: DC = DF.

c) Chứng minh: AE song song FC. ( AE // FC )

BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh: Tam giác ABD = tam giác ACE.

b) Chứng minh: Tam giác AED cân.

c) Chứng minh: AH là đường trung trực của ED.

b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.

Chứng minh: ECB^ = DKC^.

#helpme

#mainopbai

 

 

5
24 tháng 4 2017

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

24 tháng 4 2017

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp