Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhé !
Giải
a) Xét tam giác MHB và tam giác MKC có
MB = MC ( vì M là trung điểm của BC )
HMB = KMC ( vì đối đỉnh )
MH = MK ( vì m là trung điểm của HK )
Do đó Tam giác MHB = tam giác MKC
a) Xét ΔABH,ΔAKHΔABH,ΔAKH có:
BH=HK(gt)BH=HK(gt)
ˆAHB=ˆAHKAHB^=AHK^
AH: cạnh chung
⇒ΔABH=ΔAKH(c−g−c)⇒ΔABH=ΔAKH(c−g−c)
b) Vì ΔABH=ΔAKHΔABH=ΔAKH
⇒AB=AK⇒AB=AK ( cạnh tương ứng ) (1)
Xét ΔAMK,ΔCMEΔAMK,ΔCME có:
AM=MC(=12AC)AM=MC(=12AC)
ˆM1=ˆM2M1^=M2^ ( đối đỉnh )
EM=KM(gt)EM=KM(gt)
⇒ΔAMK=ΔCME(c−g−c)⇒ΔAMK=ΔCME(c−g−c)
⇒EC=AK⇒EC=AK ( cạnh tương ứng ) (2)
Từ (1) và (2) ⇒EC=AB(=AK)⇒EC=AB(=AK)
c) Xét ΔAMEΔAME và ΔCMKΔCMK có:
AM=MC(=12AC)AM=MC(=12AC)
ˆM3=ˆM4M3^=M4^ ( đối đỉnh )
KM=EM(gt)KM=EM(gt)
⇒ΔAME=ΔCMK(c−g−c)⇒ΔAME=ΔCMK(c−g−c)
⇒ˆE1=ˆK1⇒E1^=K1^ ( góc tương ứng )
Mà ˆE1E1^ và ˆK1K1^ ở vị trí so le trong nên AE // KC hay AE // BC
Vậy a) ΔABH=ΔAKH
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)