K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ HN//CM

Xét ΔAMC có HN//CM

nên AH/AM=AN/AC=1/3=HN/CM

=>AH=1/3AM=1/3*2/3*AB=2/9*AB

AH=2/9AB

=>BH/AB=7/9

mà BM/AB=1/3

nên BM/BH=1/3:7/9=1/3*9/7=3/7

Xét ΔBHN có MK//HN

nên MK/HN=BM/BH=3/7

=>MK=3/7HN=3/7*1/3*CM=1/7*CM

=>CK/CM=6/7

S AMC=2/3*S ABC

=>S AKC=6/7*2/3*S ABC=4/7*S ABC

26 tháng 8 2015

Ta có MP là đường trung bình tam giác BCN, suy ra P là trung điểm NC. Mặt khác theo định lý Ta-let:

\(\frac{NA}{NP}=\frac{KA}{KM}=\frac{1}{2}\to NP=2NA\to AP=\frac{3}{5}AC\to S_{APM}=\frac{3}{5}S_{AMC}=\frac{3}{5}\cdot30\left(cm^2\right)=18\left(cm^2\right).\)

Mặt khác \(KN\parallel MP,\frac{AN}{AP}=\frac{1}{3}\to\Delta AKN\sim\Delta AMP\) với tỉ số đồng dạng \(k=\frac{1}{3}.\)

Do đó \(\frac{S_{AKN}}{S_{AMP}}=\frac{1}{9}\to S_{AKN}=\frac{1}{9}\cdot18\left(cm^2\right)=2\left(cm^2\right).\)

12 tháng 10 2015

a) Áp dụng: Diện tích của một tam giác bằng nửa tích của 2 cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét ΔABC có

BN,CM,AE là các đường cao

BN cắt CM tại H

Do đó: A,H,E thằng hàng

19 tháng 5 2023

a. Ta có góc BOC = 120\(^0\)

\(\Rightarrow\)  góc BAC = 60\(^0\). Vì AB và AC là tiếp tuyến nên AB = AC.

Do đó, tam giác ABC là tam giác đều.

Vì tam giác ABC đều nên ta có BC = AB = AC = 2R.

b. Ta có góc BOC = 120\(^0\), suy ra góc BAC = 60\(^0\).

Gọi H là hình chiếu của O trên BC. Khi đó OH = R.cos60\(^0\) = R/2.

Gọi x = BM, y = MC. Ta có:

+ BH = R-X

+ CH = R-Y

+ AH = AB - BH = R + x

+ AH = AC - CH = R + y

 Áp dụng định lý Ptolemy cho tứ giác a. Ta có góc BOC = 120\(^0\), suy ra góc BAC = 60\(^0\). Vì AB và AC là tiếp tuyến nên AB = AC. Do đó, tam giác ABC là tam giác đều.

Vì tam giác ABC đều nên ta có BC = AB = AC = 2R.

Áp dụng định lý Ptolemy cho tứ giác ABOM và ACOM, ta có:

AB . OM + AC . OM = AO . BC

R . (x + y) + R . (x + y + BC) = AO . BC

R . (2x + 2y + BC) = AO . BC

Do đó, ta có: BC = (2R . x)/(AO - 2R) = (2R . y)/(AO - 2R)

Gọi T là điểm cắt của tiếp tuyến tại M với BC. Ta có:

+ OT vuông góc với BC

+ MT là đường trung bình của tam giác OBC

Do đó, ta có: MT = (1/2)BC = R . x/(AO - 2R) = R . y/(AO - 2R)

Gọi G là trọng tâm của tam giác AEF. Ta có:

+ OG song song với EF và bằng một nửa đường cao AH của tam giác ABC

+ AG = (2/3)AH

Do đó, ta có: OG = (1/3)AO và EF = 20G = (2/3)AO/3

Áp dụng định lý Ptolemy cho tứ giác OFCI, ta có:

OF . IC + OI . FC = OC . FI

R . (y + EF) + R . x = R . (y+x)

R . y + (2/3)AO/3 = R . x

Do đó, ta có: R.y/(AO-2R) + (2/3)AO/(3R) = R.x/(AO-2R)

Tổng quát hóa, ta có: nếu M thuộc cung BC nhỏ thì chu vi tam giác AEF không đổi.

Câu c. mik ko bt làm

27 tháng 5 2021

a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.

b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).

Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).

c) Gọi P' là trung điểm của MC.

Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.

Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.

Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.