Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Ta có: ΔABM=ΔCDM
nên \(\widehat{ABM}=\widehat{CDM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 1 : Bài giải
A B C D E F O
a, Trong \(\Delta ABC\) vuông tại A có :
\(AB^2+AC^2=BC^2\text{ }\Rightarrow\text{ }9^2+12^2=81+144=225=BC^2\text{ }\Rightarrow\text{ }BC=5\text{ }cm\)
b, Vì BD là đường phân giác \(\widehat{ABC}\) nên : \(\widehat{B_1}=\widehat{B_2}\)
Xét 2 tam giác \(\Delta ABD\) vuông tại A và \(\Delta AED\) vuông tại E có :
\(BD\) : cạnh huyền - cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( cmt )
\(\Rightarrow\text{ }\Delta ABD=\Delta AED\text{ }\left(ch-gn\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
\(\Rightarrow\text{ }\Delta DAE\text{ cân }\)
c, Trong \(\Delta DEC\text{ }\) vuông tại E có : DC là cạnh đối diện với \(\widehat{E}\) nên \(DC\) là cạnh có độ dài lớn nhất \(\Rightarrow\text{ }DE< DC\)
Mà \(DA=DE\text{ nên }DA< DC\)
d, Vì \(\hept{\begin{cases}DE\text{ }\perp\text{ }BC\\BF\text{ }\perp\text{ }CF\\AB\text{ }\perp\text{ }AC\end{cases}}\text{ }\Rightarrow\text{ }DE\text{ , }AB\text{ và }BF\text{ là đường cao của }\Delta OBC\)
\(\Rightarrow\text{ }AB\text{, }DE\text{ và }CF\text{ đồng quy tại 1 điểm}\)
a: Xét ΔBMC và ΔDMA có
MB=MD
góc BMC=góc DMA
MC=MA
=>ΔBMC=ΔDMA
=>góc MBC=góc MDA
=>BC//AD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hbh
=>AB=CD
=>CD=CA
=>ΔCAD cân tại C
c: Xét ΔEBD có
EM là trung tuyến
EC=2/3EM
=>C là trọng tâm
=>DC đi qua trung điểm của BE
a) Xét ΔABM và ΔCDM có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔABM=ΔCDM(c-g-c)
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)
mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong
nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔDBN có
M là trung điểm của BD(gt)
C là trung điểm của DN(gt)
Do đó: MC là đường trung bình của ΔDBN(Định nghĩa đường trung bình của tam giác)
Suy ra: MC//BN(Định lí 2 đường trung bình của tam giác)
hay BN//AC(đpcm)