K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBDC có 

M.E lần lượt là trung điểm của CB và CD

nen ME là đường trung bình

=>ME//BD

b: Xét ΔAME có

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

c: \(BD=2\cdot ME=2\cdot2\cdot ID=4ID\)

=>IB=3ID

9 tháng 10 2020

a) Xét tam giác BDC có: MB= MC (gt), ED= EC (gt)

=> ME là đường trung bình tam giác BDC (đ/n)

=> ME // BD (t/c)

b) Vì ME// BD (cmt) => ME // IB // ID ( I thuộc BD)

 - Xét tam giác AME có: ME // ID (cmt), DA= DE (gt)

=> IA = IM (t/c)

Hay I là trung điểm của AM (đpcm)

c) +) Vì ME là đường TB tam giác BDC (cmt) => \(ME=\frac{1}{2}BD\)(t/c)     (1)

    +) Xét tam giác AME có IA= IM (cmt), DA= DE (gt)

=> ID là đường TB tam giác AME (đ/n)

=> \(ID=\frac{1}{2}ME\)(t/c)           (2)

   Từ (1) và (2) có:      \(ID=\frac{1}{4}BD\)

                   =>       4. ID  =  BD       

                    =>      4.ID   =    IB + ID

                   =>      IB       =     3ID  (đpcm)

d) Nối FC, FI.  Kẻ MN // FC.(N thuộc AB)

    +) Xét tam giác BFC có MN // FC (cvẽ), MB = MC (gt)

  => NB = NF (t/c)

        Xét tam giác BFC có NB = NF (cmt), MB = MC (gt)

  => MN là đường TB tam giác BFC (đ/n)

  => MN // FC (t/c)              (3)

    +) Vì AF = 1/3.AB (gt) và AB= FA+ FB

  =>  AF = 1/2.FB mà NB + NF = FB, NB = NF (cmt)

  => AF = NF = NB

     +) Xét tam giác AMN có IA = IM (cmt), FA =FN (cmt)

  =>  FI là đường TB tam giác AMN (đ/n)

  => FI // MN (t/c)              (4)

         Từ (3) và (4) có FI và FC trùng nhau (theo tiên đề Ơ-clit)

                             => 3 điểm F, I, C thẳng hàng (đpcm)

**: Bn tự vẽ hình nhaaaaaaa......

                   

4 tháng 10 2021

mình cũng ko bít nên xl bạn nhé

 

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

25 tháng 9 2018

Hình tự vẽ.

a)C/m : CD=DE ; BM=MC;=> ME là đường trung bình của tam giác BDC.

=> BD // ME.

hay ID // ME mà AD=DE;=> ID là đường trung bình của tam giác AME.

=> I là trung điểm của AM.

b) Vì ID là đường trung bình của tam giác AME.

=> ID = 1/2 ME.(1)

Mà ME là đường trung bình của tam giác BDC.

=> ME=1/2 BD.(2)

Từ (1) và (2), suy ra:

ID=BD/4.