K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

a) Vì AB//CK (gt)

=> AMN = NAC ( so le trong) 

Xét ∆ANM và ∆KNC có : 

AMN = NAC 

ANM = KNC 

AN = NC 

=> ∆ANM = ∆KNC (g.c.g)

=> AM = CK 

b) Xét ∆ABC có : 

MN//BC (gt)

M là trung điểm AB 

=> N là trung điểm AC ( đường trung bình) 

c) Xét ∆ABC có :

M là trung điểm AB 

N là trung điểm AC

=> MN là đường trung bình ∆ABC 

=> MN = \(\frac{1}{2}BC\)

Xét ΔCBE có AM//BE

nên \(\dfrac{AM}{BE}=\dfrac{CM}{CB}\)

Xét ΔBDC có AM//DC

nên \(\dfrac{AM}{DC}=\dfrac{BM}{BC}\)

\(\dfrac{AM}{BE}+\dfrac{AM}{DC}=\dfrac{BM}{BC}+\dfrac{CM}{BC}\)

=>\(AM\left(\dfrac{1}{BE}+\dfrac{1}{DC}\right)=\dfrac{BC}{BC}=1\)

=>\(\dfrac{1}{AM}=\dfrac{1}{BE}+\dfrac{1}{CD}\)

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC