Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tâm hình bình hành MBDC, J là tâm hình bình hành MAED. G là giao điểm của AI và EM
Tứ giác MBDC là hình bình hành nên BI = IC và MI = ID
Tứ giác MAED là hình bình hành nên AJ = JD
∆AMD có AI và MJ là hai đường trung tuyến cắt nhau tại G nên G là trọng tâm của ∆AMD => AG = 2/3AI
∆ABC có AI là đường trung tuyến và AG = 2/3AI nên G là trọng tâm của ∆ABC => G là điểm cố định
Vậy đường thẳng ME luôn đi qua một điểm cố định G (đpcm)
A B C M N I D E J
Gọi J là trung điểm cạnh BC, MN cắt AJ tại I.
Vì MADB và MAEC là các hình bình hành nên \(BD=MA=CE,BD||MA||CE\)
Suy ra BDEC là hình bình hành, suy ra N là trung điểm BE. Do đó NJ là đường trung bình \(\Delta BEC\)
Suy ra \(NJ||CE||AM,NJ=\frac{1}{2}CE=\frac{1}{2}AM\)
Theo định lí Thales \(\frac{IJ}{IA}=\frac{NJ}{MA}=\frac{1}{2}\). Vì AJ là trung tuyến của \(\Delta ABC\) nên I là trọng tâm \(\Delta ABC\)
Vậy MN đi qua I cố định.
A B C D M N I K
nối BD và AC
trong tam giác ABC ta có: M và N lần luợt là trung đỉêm của AB và AC
=> MN là đuờng trung bình của tam giác ABC
=> MN//AC(
trong tam giác ADC ta có I và K lần luợt là trung điểm của DC và DA
=> KI là đuờng trung bình của tam giác ADC
=> KI//AC
ta có: KI//AC
MN//AC
=> KI//MN(1)
trong tam giác ABD có M và K lần luợt là trung điểm của AB và AD
=> MK là đuờng trung bình của tam giác ADB
=> MK//DB
trong tam giác CDB có I và N lần luợt là trung điểm của DC và CB
=> IN là đuờng trung bình của tam, giác CDB
=>IN//BD
ta có: MK//DB
IN//DB
=> MK//IN(2)
từ (1)(2)=> MK//IN
MN//KI
=> MNIK là hình bình hành
Bài 1:Vẽ đường chéo BD
Xét tam giác ADB có:
M là trung điểm của AB
K là trung điểm của AD
=>KM là đường trung bình của tam giác ADB
=>KM//DB(1) và KM=1/2 DB(3)
Xét tam giác BCD có:
N là trung điểm của BC
I là trung điểm của DC
=>NI là đường trung bình của tam giác BCD
=>NI//DB(2) và NI=1/2DB(4)
Từ (1) và (2)=>KM//NI( //DB)(5)
Từ (3) và (4)=>KM=NI(=1/2 DB)(6)
Từ (5) và (6)=>KMNI là hình bình hành (dhnb3)
Gọi I là giao điểm của BC và MD
Vì MBDC là hình bình hành
\(\Rightarrow IB=IC\)
Gọi K là giao điểm của AD và ME
Vì MAED là hình bình hành
\(\Rightarrow KD=KA\)
Xét \(\Delta AMD\)có MK và AI là các đường trung tuyến
=> G là trọng tâm của \(\Delta AMD\)( G là giao điểm của MK và AI )
\(\Rightarrow GI=\frac{1}{3}AI\)
=> AI là đường trung tuyến của tam giác ABC
Mà \(GI=\frac{1}{3}AI\)
Nên G là trong tâm của tam giác ABC
=> G là điểm cố định
Vậy khi M di động thì đương thẳng ME luôn đi qua điểm G cố định
A B C M D E I G K