Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa theo đề bài ta có hình vẽ: A B C M N I
Ta có: MA = 2MB; BN = 5CN => BN = 5/6 BC
Có \(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=-\overrightarrow{BA}+\frac{5}{6}\overrightarrow{BC}\)
Áp dụng định lí menelaus cho tam giác ABN
\(\frac{MA}{MB}.\frac{CB}{CN}.\frac{IN}{IA}=1\)=> \(\frac{2}{1}.\frac{6}{1}.\frac{IN}{IA}=1\Rightarrow IA=12IN\)=> \(\overrightarrow{AI}=\frac{12}{13}\overrightarrow{AN}\)
Ta có: \(\overrightarrow{BI}=\overrightarrow{BA}+\overrightarrow{AI}=\overrightarrow{BA}+\frac{12}{13}\overrightarrow{AN}=\overrightarrow{BA}+\frac{12}{13}\left(-\overrightarrow{BA}+\frac{5}{6}\overrightarrow{BC}\right)\)rút gọn tính tiếp nhé
Bài này có nhiều cách làm, vẽ thêm đường phụ cũng được, dùng định lý Menelaus cũng được nhưng lớp 10 thì nên dùng vecto
Ta có:
\(k=\dfrac{AG}{AB}=1-\dfrac{BG}{AB}=1-\dfrac{DE}{AB}=1-\dfrac{2DE}{3EF}\)
Đặt \(\dfrac{AD}{AM}=m\)
\(\Rightarrow\overrightarrow{ED}=m\overrightarrow{EM}+\left(1-m\right)\overrightarrow{EA}\)
\(=m\left(\overrightarrow{EC}+\overrightarrow{CM}\right)+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)
\(=\dfrac{2}{3}m\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)
\(=\left(m-\dfrac{1}{3}\right)\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}\)
Lại có: \(\overrightarrow{EF}=\dfrac{2}{3}\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{CB}\)
Mà \(D,E,F\) thẳng hàng nên:
\(\left(m-\dfrac{1}{3}\right)\dfrac{2}{3}=\dfrac{1}{2}m.\dfrac{2}{3}\Leftrightarrow m=\dfrac{2}{3}\)
\(\Rightarrow\overrightarrow{ED}=\dfrac{1}{2}\overrightarrow{EF}\Rightarrow ED=\dfrac{1}{2}EF\)\(\Leftrightarrow\dfrac{DE}{EF}=\dfrac{1}{2}\)
\(\Rightarrow k=\dfrac{2}{3}\)