Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI NÀY NẾU CHỈ NÓI ĐỒNG QUY THÌ NHIỀU TRƯỜNG HỢP LẮM NÀO THÌ GIAO 3 ĐƯỜNG TRUNG TUYẾN; PHÂN GIÁC;ĐƯỜNG CAO
Gọi I là giao điểm của đường trung trực đoạn HC và tia phân giác ^BHC => I là điểm cố định
I nằm trên đường trung trực của HC nên IH = IC => ∆IHC cân tại I => ^IHC = ^ICH
Lại có: ^IHC = ^IHM (Do HI là tia phân giác của ^BHC, theo cách chọn điểm phụ) => ^IHM = ^ICH hay ^IHM = ^ICN
Xét ∆ICN và ∆IHM có:
IC = IH (theo cách chọn hình phụ)
^ICN = ^IHM (cmt)
CN = HM (gt)
Do đó ∆ICN = ∆IHM (c.g.c)
=> IN = IM (hai cạnh tương ứng)
Do đó I thuộc đường trung trực của MN
Vậy đường trung trực của MN luôn đi qua một điểm cố định I (đpcm)
A B C H N M 3 4
Xét \(\Delta HAC\)vuông tại H có HN là đường trung tuyến ứng với cạnh huyền
=> HN = NC = NA = AC/2
=> AC = 2HN = 8
Tương tự AB = 6
Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)
\(\Leftrightarrow AH=\frac{24}{5}\)
Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có
\(HA^2+HC^2=AC^2\)
\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)
\(\Leftrightarrow HC=\frac{32}{5}\)
Tương tự \(HB=\frac{18}{5}\)
xét tam giác HMB vuông tại M va tam giác CHA vuông tại Hcó
góc BHM =góc HCA (MH//AC,cùng vuông góc AB)
=> tam giác HMB đồng dạng tam giác CHA (g-g)
=> BH/AC=BM/AH
tương tự cm tam giác AHB đồng dạng tam giác CNH (g-g)
=> AH/CN=AB/HC
tam giác ABC vuông tại A=> AB^2=BH.BC (hệ thức lượng tam giác vuông)
tam giác ABC vuong tại A=> AH.BC=AB.AC=> AB=AH.BC/AC (hệ thức lượng tam giác vuong)
=> \(AB^3=BH.BC.\frac{AH.BC}{AC}=\frac{BH.AH.BC^2}{AC}\)
tương tự ta cm được \(AC^3=\frac{BC^2.HC.AH}{AB}\)
=> \(\frac{AB^3}{AC^3}=\frac{BH.AH.BC^2}{AC}.\frac{AB}{BC^2.AH.HC}=\frac{BH}{AC}\frac{AB}{HC}=\frac{BM}{AH}.\frac{AH}{CN}=\frac{BM}{CN}\left(đpcm\right).\)