K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

A B C M Y Y' X P Q N K L (O ) 1 (O ) 2

Dựng một đường tròn đi qua M và X đồng thời tiếp xúc với BC, đường tròn đó cắt (O1) tại Y' khác M.

Gọi Y'M và XM cắt đường tròn (AXY') lần lượt tại K và L (K khác Y'; L khác X); BC cắt (O1);(O2) tại P,Q; QX cắt PY' tại N

Ta có ^AXN = 1800 - ^AXQ = 1800 - ^AMQ = ^AMP = ^AY'N, suy ra N thuộc đường tròn (AXY')

Do vậy ^AKM = ^ANP mà ^AMK = ^APN nên \(\Delta\)KAM ~ \(\Delta\)NAP (g.g) suy ra AK.AP = AM.AN

Tương tự \(\Delta\)MAL ~ \(\Delta\)QAN (g.g) thì AL.AQ = AM.AN. Từ đó AK.AP = AL.AQ, dễ có \(\Delta\)LAK ~ \(\Delta\)PAQ (*)

Vì ^XMQ = ^XY'M = ^MLK nên KL // PQ, kết hợp với (*) suy ra (AL,AP) = (AK,AQ) = (KL,PQ) = 0o

Từ đây P,L,A thẳng hàng và Q,K,A thẳng hàng. Khi đó PL.PA = PN.PY'; QK.QA = QX.QN   (1)

Mặt khác \(\frac{KM}{NP}=\frac{AK}{AN};\frac{LM}{NQ}=\frac{AL}{AN}\Rightarrow\frac{AK}{AL}=\frac{KM}{NP}.\frac{NQ}{LM}\Rightarrow\frac{QN}{PN}=\frac{AK}{AL}.\frac{LM}{KM}\) (2)

Từ (1) và (2) suy ra \(\frac{QX.QN}{PN.PY'}=\frac{QX}{PY'}.\frac{AK}{AL}.\frac{LM}{KM}=\frac{QK.QA}{PL.PA}\Rightarrow\frac{QX}{PY'}.\frac{LM}{KM}=\frac{AK}{AL}\)

\(\Leftrightarrow\frac{QX}{PY'}=\frac{AK}{AL}.\frac{KM}{LM}\Rightarrow\frac{QX.AM}{PY'.AM}=\frac{AQ.MX}{AP.MY'}\)

Chú ý rằng tứ giác AQXM là tứ giác điều hòa, như vậy PY'.AM = AP.MY'. Suy ra tứ giác APY'M điều hòa

Ta thấy tiếp tuyến tại A của (O1) cắt AM tại C, do đó CY' cũng là tiếp tuyến của (O1)

Lại có CY là tiếp tuyến từ C đến (O1) nên Y trùng Y'. Vậy (MXY) tiếp xúc với BC tại M (đpcm).

14 tháng 4 2019

A B C O O D P G E H F O 1 2 3 K

Gọi DA cắt (O3( tại G khác A, GP cắt FD tại K. Giao điểm thứ hai của BD và (BAF) là H.

Ta có ^APG = ^AEG = ^AFK => Tứ giác APKF nội tiếp => K thuộc (BAF)

Dễ thấy: ^AFK = ^AED = ^ABH = ^AFH => (AK(BAF) = (AH(BAF) => ^KBA = ^HFE.

Chứng minh được \(\Delta\)FDE ~ \(\Delta\)ADB (g.g) suy ra \(\frac{AB}{FE}=\frac{AD}{DF}=\frac{BD}{DF}=\frac{BK}{FH}\)

Từ đây có \(\Delta\)AKB ~ \(\Delta\)EHF (c.g.c) cho nên ^BAK = ^FEH = ^BFK. Do ^AFK = ^AED nên ^AFB = ^DEH

Kết hợp với ^HDE = 1800 - ^BDE = 1800 - ^BAE = ^BAF dẫn đến \(\Delta\)DEH ~ \(\Delta\)AFB (g.g)

=> \(\frac{HE}{BF}=\frac{DE}{AF}\). Lại có \(\Delta\)DGE ~ \(\Delta\)ACF (g.g) => \(\frac{DE}{AF}=\frac{GE}{CF}\). Suy ra \(\frac{HE}{BF}=\frac{GE}{CF}\)(*)

Mặt khác ta có biến đổi góc ^GEH = ^GED - ^DEH = ^AFC - ^AFB = ^CFB. Từ đó kết hợp với (*) ta thu được:

\(\Delta\)EGH ~ \(\Delta\)FCB (c.g.c) => ^EGH = ^FCB. Mà ^EGD = ^ACF nên ^DGH = ^ACB.

Khi đó dễ dàng chỉ ra \(\Delta\)ABC ~ \(\Delta\)DGH (g.g) => \(\Delta\)DGH cân tại D => ^DGH = ^DHG

Ta thấy ^DGP = ^BAP = ^DGH => Tứ giác PGHD nội tiếp. Từ đây ^DPK = ^DHG = ^DGH = ^DPH

Do đó PD là phân giác ^KPH. Chú ý ^APG = ^AEG = ^AFD = ^ABH = ^APH => PA là phân giác ^HPG

Mà ^KPH và ^HPG kề bù nên PA vuông góc PD hay ^APD = 900 (đpcm).

30 tháng 9 2019

tớ xin chúc mừng nguyễn tất đạt nhá

23 tháng 12 2018

A N M D E F G L P Q T H K I I J J 1 2 1 2

a) Xét đường tròn (J1) có: ^HJ1D = 2.^HMD (^HMD=1/2.Sđ(HD ). Tương tự: ^KJ2D = 2.^KND

Dễ thấy tứ giác MEFN nội tiếp (Do ^MEN = ^MFN) => ^DMH = ^DNK (2 góc nội tiếp cùng chắn cung EF)

Do đó: ^HJ1D = ^KJ2D. Mà các tam giác HJ1D và KJ2D cân tại J1 và J2 => ^J2DK + 1/2.^HJ1D = 900

Hay ^J2DK + ^HMD = 900 => J2D vuông góc EM. Có J1H vuông góc EM => J2D // J1H

=> ^J1DJ2 = ^HJ1D (So le trong) => ^HDK = ^J1DJ2 + ^J1DH + ^J2DK = ^HJ1D + ^J1DH + ^J1HD = 1800

=> 3 điểm K,H,D thẳng hàng. Lại có: ^AHD = 1/2.Sđ(HD;  ^AKD = 1/2.Sđ(KD => ^AHD = ^AKD

Từ đó: ^AHK = ^AKH => \(\Delta\)HAK cân tại A => AH=AK

Gọi giao điểm của tia AD với (I1) và (J1) lần lượt là P' và Q'. Ta sẽ chứng minh P' trùng P; Q' trùng Q.

Theo hệ thức lượng trong đường tròn: AH2 = AD.AQ' => AK2 = AD.AQ' => \(\Delta\)ADK ~ \(\Delta\)AKQ' (c.g.c)

=> ^AKD = ^AQ'K = 1/2.Sđ(DK => Điểm Q' nằm trên (J2) => Q' trùng Q (1)

Tương tự: AE.AM = AD.AP'; AE.AM = AF.AN => AF.AN = AD.AP' => \(\Delta\)ADF ~ \(\Delta\)ANP' (c.g.c)

=> ^ADF = ^ANP' => Tứ giác DFNP' nột tiếp => Điểm P' thuộc (DFN) hay P' thuộc (I2) => P' trùng P (2)

Từ (1) và (2) => Tia AD đi qua 2 điểm P và Q hay 3 điểm D,P,Q thẳng hàng (đpcm).

b) Định trên đoạn thẳng EF một điểm T thỏa mãn \(\frac{ET}{FT}=\frac{HD}{KD}\)

Ta thấy ^GEA = ^GFA => ^GEH = ^GFK. Kết hợp với ^GHE = ^GKF => \(\Delta\)GEH ~ \(\Delta\)GFK (g.g)

=> \(\frac{GE}{GH}=\frac{GF}{GK}\). Lại có: ^EGF = ^EAF = ^HGK (Các góc nội tiếp) => \(\Delta\)GEF ~ \(\Delta\)GHK (c.g.c)

Do T và D định trên các cạnh EF, HK các tỉ số tương ứng bằng nhau nên \(\Delta\)GTF ~ \(\Delta\)GDK (c.g.c)

=> \(\frac{GT}{GD}=\frac{GF}{GK}\). Nhưng ^TGD = ^FGK (=^TGF - ^TGK) nên \(\Delta\)GTD ~ \(\Delta\)GFK (c.g.c) 

=> ^GDT = ^GKF. Mà ^GKF = ^GQD => ^GDT = ^GQD = 1/2.Sđ(GD => DT là tia tiếp tuyến của đường tròn (DGQ) (3)

Mặt khác:^GLE = ^GFE = ^GKH = ^GQH. Dễ thấy: \(\Delta\)LEF ~ \(\Delta\)QHK. Từ \(\frac{ET}{FT}=\frac{HD}{KD}\)=> \(\Delta\)ELT ~ \(\Delta\)HQD

=> ^ELT = ^HQD => ^ELT - ^GLE = ^HQD - ^GQH => ^GLT = ^GQD. Mà ^GQD = ^GDT (cmt) nên ^GLT = ^GDT 

Từ đó có: Tứ giác GDLT nội tiếp hay điểm T nằm trên đường tròn (DLG)   (4)

Qua (3) và (4) suy ra: Tiếp tuyến tại D của đường tròn (DGQ) cắt EF tại điểm T nằm trên đường tròn (DLG) (đpcm).

8 tháng 7 2021

A B C M N P Q R S

Gọi R,S lần lượt là điểm đối xứng với C,B qua N,P. Lấy Q' là trung điểm của RS.

Ta có: \(AR=CA-CR=CA-2.\frac{CA+CP-AP}{2}=AP-CP\)

Tương tự \(AS=AP-BP\). Vì \(BP=CP< PA\) nên \(AR=AS\)

Suy ra AQ' là trung tuyến của \(\Delta\)RAS và cũng là đường phân giác \(\widehat{BAC}\)

Mặt  khác tam giác BPC cân tại P có đường tròn nội tiếp tiếp xúc với BC tại M, suy ra M là trung điểm BC

Theo tính chất đường trung bình thì tứ giác MNQ'P là hình bình hành

Do vậy Q' trùng với Q. Mà AQ' là phân giác góc BAC nên AQ là phân giác góc BAC.

8 tháng 7 2021

Sửa cả đề và trong bài giải luôn: Thay điểm P nằm trong tam giác thành P', tránh trùng với điểm P trên cạnh AB.

3 tháng 3 2019

O O E B A 1 2 M J C F I x K N

a) Gọi AM cắt (O2) tại N khác M. Khi đó: Dễ thấy: ^MFE=^MNE = ^MO2E/2 = ^MO1J/2 = ^MAJ

=> ^MFI = ^MCI (Do ^MAJ = ^MCI) => Tứ giác MCFI nội tiếp => ^JAM = ^MCI = ^MFI = ^MEB hay ^JAM = ^JEA

Từ đó: \(\Delta\)JAM ~ \(\Delta\)JEA (g.g) => JA2 = JM.JE (1)

Ta có: ^JIM = ^CIM = ^CFM = ^FEM => \(\Delta\)JIM ~ \(\Delta\)JEI (g.g) => IJ2 = JM.JE (2)

Từ (1);(2) suy ra: JA2 = IJ2 = JM.JE => \(JA=IJ=\sqrt{JM.JE}\) (đpcm).

b) Gọi Cx là tia đối tia CA. Ta có đẳng thức về góc: ^ICx = ^JCA = ^JMA = ^JAB (Vì \(\Delta\)JAM ~ \(\Delta\)JEA)

=> ^ICx = ^JAB = ^ICB => CI là tia phân giác ^BCx hay CI là tia phân giác ngoài tại C của \(\Delta\)ABC (đpcm).

c) Ta thấy: \(\Delta\)IKC ~ \(\Delta\)IJA, JA = JI (cmt) => KI = KC (3)

Theo câu b thì ^JAB = ^JCA = ^JBA => \(\Delta\)ABJ cân tại J => JA = JB = JI => \(\Delta\)IJB cân tại J

=> ^CBI = ^JBI - ^JBC = (1800 - ^IJB)/2 - ^JBC = (1800 - ^IJB - 2.^JBC)/2 = (1800 - ^BAJ - ^JBC)/2

= (^ACB + ^JBA - ^JAC)/2 = (^ACB + ^BAC)/2 => BI là phân giác ^CBE.

Từ đó I là tâm bàng tiếp ứng đỉnh A của \(\Delta\)ABC => AI là phân giác ^BAC

Do vậy, K là điểm chính giữa cung BC không chứa A của (O1) => KC = KB (4)

Từ (3);(4) suy ra: KB = KC = KI => K là tâm ngoại tiếp \(\Delta\)BCI (đpcm).