K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

Kẻ đường cao AD, BE và CF.

\(\Delta AEF~\Delta ABC\left(c.g.c\right)\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\cos^2A\)

\(\Delta BFD~\Delta BCA\left(c.g.c\right)\Rightarrow\dfrac{S_{BFD}}{S_{BCA}}=\left(\dfrac{BF}{BC}\right)^2=\cos^2B\)

\(\Delta CDE~\Delta CAB\left(c.g.c\right)\Rightarrow\dfrac{S_{CDE}}{S_{CAB}}=\left(\dfrac{CE}{CB}\right)^2=\cos^2C\)

\(\sin^2A+\sin^2B+\sin^2C=3-\left(\cos^2A+\cos^2B+\cos^2C\right)\)

\(=3-\left(\dfrac{S_{AEF}}{S_{ABC}}+\dfrac{S_{BFD}}{S_{BCA}}+\dfrac{S_{CDE}}{S_{CAB}}\right)>3-\dfrac{S_{ABC}}{S_{ABC}}=2\left(\text{đ}pcm\right)\)

6 tháng 9 2019

Ta có:
\(A + B + C = π \Rightarrow C = π - (A + B) \Rightarrow cosC = cos[π - (A + B)] = - cos(A + B) \)

\(P = Sin^2A+Sin^2B+Sin^2C = \dfrac{1 - cos2A}2 + \dfrac{1 - cos2B}2 + 1 - cos^2C\)

\(= 2 - \dfrac{cos2A + cosB}2 - cos^2(A+B)\)

\(= 2 - cos(A+B).cos(A-B) - cos^2(A+B)\)

\(= 2 - cos(A+B)[cos(A-B) + cos(A+B)]\)

\(= 2 - cos(A+B).2cosA.cosB\)

\(= 2 + 2.cosC.cosA.cosB \)
\(A ,B , C\) là các góc nhọn \(\Rightarrow\) \(cosC.cosA.cosB > 0\)

\(\Rightarrow\) \(P = Sin^2A+Sin^2B+Sin^2C > 2\)

5 tháng 11 2021
Giải. Áp dụng công thức lượng giác.

Bài tập Tất cả

ai tích mình mình tích lại cho

10 tháng 7 2016

  Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.

  Ta có:  

Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm 

   trong đó với     , ta có:

  

Tương tự, ta có:

       

Cộng ba bất đẳng thức     và   , ta được:

  

Khi đó, ta chỉ cần chứng minh

  

Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau:    (bất đẳng thức Cauchy cho ba số   )

Hay       

Mà    đã được chứng minh ở câu    nên    luôn đúng với mọi  

Dấu    xảy ra    

Vậy,       

 
4 tháng 8 2016

đặt AB=c, BC=a, AC=c.
để chứng minh bđt trên ta sẽ áp dụng công thức: \(S_{\Delta ABC}=\frac{1}{2}.a.b.sinC=\frac{1}{2}.b.c.sinA=\frac{1}{2}.a.c.sinB\)
ta có: \(\frac{sinA}{sinB+sinC}+\frac{sinB}{sinA+sinC}+\frac{sinC}{sinA+sinB}\)
       \(=\frac{a.b.c.sinA}{a.b.c.sinB+a.b.c.sinC}+\frac{a.b.c.sinB}{a.b.c.sinA+a.b.c.sinC}+\frac{a.b.c.sinC}{a.b.c.sinA+a.b.c.sinB}\)
        ;\(=\frac{2S_{\Delta ABC}.a}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.c}+\frac{2S_{\Delta ABC}.b}{2.S_{\Delta ABC}.c+2.S_{\Delta ABC}.b}+\frac{2S_{\Delta ABC}.c}{2S_{\Delta ABC}.b+2S_{\Delta ABC}.a}\)
         \(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\).
Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c};\frac{b}{a+c}>\frac{b}{a+b+c};\frac{c}{a+b}>\frac{c}{a+b+c}\)
nên \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1.\)
Ta sẽ chứng minh bđt phụ: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\left(1\right)\)
Thật vậy: \(\left(1\right)\Leftrightarrow a^2< a\left(b+c\right)\Leftrightarrow a< b+c\)(đúng vì a,b,c là độ dài 3 cạnh của tam giác).
tương tự: \(\frac{b}{a+c}< \frac{2b}{a+b+c};\frac{c}{a+b}< \frac{2c}{a+b+c}\).
suy ra: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{b+c}+\frac{2b}{a+c}+\frac{2c}{a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\).
vậy bất đẳng thức đã được chứng minh.
 

4 tháng 8 2016

câu này khó ghê