K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2015

A B C D E F

a/

Ta có: AD //CE =>  AEC= BAD ( đồng vị)     (1)

                            DAC= ACE ( sole trong)    (2)

và AD là tia phân giác của góc BAC => BAD=DAC    (3)

Từ (1), (2),(3) => ACE=AEC  

b/  

Ta có:

ABC + EAC=180 ( kề bù)

và AD là tia phân giác của ABC =>  DAC= \(\frac{ABC}{2}\) 

    AF là tia phân giác của EAC  =>  FAC= \(\frac{EAC}{2}\)

Ta có:  DAF= DAC+EAC

                  = \(\frac{ABC}{2}+\frac{EAC}{2}\)

                  = \(\frac{180}{2}\)

                  = 90

và AD // CE => DAF=AFE=90 ( sole trong)

=>    AF vuông góc với CE

2 tháng 8 2016

a) ta có tam giác abc cân tại a

mà ad là tia phân giác góc bac

suy ra ad là dường vuông góc suy ra ad vuông góc bc

b)ta có af là tia phân giác ead thì suy ra góc fac =góc eac chia 2

tương tự với ad suy ra dac+fac=180/2=90

suy ra af // bc do cùng vuông góc với ad

c) ta có fac=acd do slt,af//bc

mà fac=fae do à là tia phân giác

      abc=acb do tam giác cân 

suy ra fae=abc

xét tam giác abd và eaf (c.g.c) suy ra ad=fe 

d)ta có ef//ad do cùng vuông góc với af

mà fc//ad do cùng vuông góc với af

suy ra e,f,c thẳng hàng

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔADB=ΔAEC

=>AD=AE
=>ΔADE cân tại A

b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔAHB=ΔAKC

=>BH=CK

Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)

=>ΔAMB=ΔANC

=>BM=CN

d: Xét ΔADE có AH/AD=AK/AE

nên HK//DE

=>HK//BC

3 tháng 5 2016

2 hoặc 3