Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạngvới ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AE*AB và AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng vói ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
a) Xét tam giác ADB vuông tại D
tam giác AEC vuông tại E
có A góc chung
=>tam giác ADB đồng dạng tam giác AEC (g-g)
a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AEC∼△ADB (g-g).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△ADE∼△ABC (g-g).
c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)
-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)
C/m \(AE=\dfrac{AC}{2}\):
-Lấy M là trung điểm BC.
-△AEC vuông tại E có: EM là trung tuyến.
\(\Rightarrow AM=EM=\dfrac{1}{2}AC\)
\(\Rightarrow\)△AEM cân tại M mà \(\widehat{EAM}=60^0\).
\(\Rightarrow\)△AEM đều \(\Rightarrow AE=AM=\dfrac{AC}{2}\)
Trả lời:
P/s Nghĩ gì làm đấy nên hông chắc à nha!!! (^-^)
b)Xét tam giác AEC và tam giác ADB, có:
+ Góc AEC = góc ADB (Giả thiết)
+ Góc A chung
=> tam giác AEC đồng dạng với tam giác ADB (G-G)
a) Ta có: AE/AB=AD/AC;AB/AC=ED/BC (VÌ tam giác AEC đồng dạng với tam giác ADB ở chứng minh trên)
=> ED//BC
+) Xét tam giác AED và tam giác ABC, có:
+ AED = ABC ( hai góc đồng dạng do ED//BC)
+ Góc A chung
=> Tam giác AED đồng dạng với tam giác ABC (G-G)
=> AE/AB = AD/AC ( Tính chất )
=> AB.AC = AD.AE ( đpcm )
~Học tốt!~
Trả lời;
P/s: Ko bik có đúng ko!!!
Ta có: MD/ME = NE/ND (VÌ tam giác AEC đồng dạng với tam giác ADB ở chứng minh trên)
=> ED//BC
+) Xét tam giác AED và tam giác ABC, có:
+ AED = ABC ( hai góc đồng dạng do ED//BC)
+ Góc A chung
=> Tam giác AED đồng dạng với tam giác ABC (G-G)
=> MD/ME = NE/ND ( Tính chất )
=> MD.NE = ME.ND ( đpcm )
~Học tốt!~
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
c: góc A=90-30=60 độ
ΔADE đồng dạng với ΔABC
=>S ADE/S ABC=(AD/AB)^2=1/4
=>S ABC=120cm2