K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

fdgdgfssdg

22 tháng 2 2018

Đề bài sai

a) Ta có: D và H đối xứng nhau qua AB(gt)

nên AB là đường trung trực của DH

hay AH=AD(1)

Ta có: H và E đối xứng nhau qua AC(gt)

nên AC là đường trung trực của EH

hay AE=AH(2)

Từ (1) và (2) suy ra AD=AE

hay ΔDAE cân tại A

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. Vì $H, D$ đối xứng nhau qua $AB$ nên $AB$ là đường trung trực của $DH$

$\Rightarrow AD=AH(1)$

Vì $H,E$ đối xứng qua $AC$ là đường trung trực của $HE$

$\Rightarrow AH=AE(2)$

Từ $(1);(2)\Rightarrow AD=AE$ nên tam giác $ADE$ cân tại $A$

b.

Vì $AB$ là trung trực $DH$ nên:

$AD=AH, MD=MH$

Do đó dễ cm $\triangle ADM=\triangle AHM$ (c.c.c)

$\Rightarrow \widehat{MHA}=\widehat{MDA}=\widehat{EDA}(*)$

Tương tự: $\triangle ANH=\triangle ANE(c.c.c)

$\Rightarrow \widehat{NHA}=\widehat{NEA}=\widehat{DEA}(**)$
Tam giác $ADE$ cân tại $A$ nên $\widehat{EDA}=\widehat{DEA}(***)$

Từ $(*); (**); (***)\Rightarrow \widehat{MHA}=\widehat{NHA}$

Do đó $HA$ là phân giác $\widehat{MHN}$

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Làm nốt câu c,d.

c. Sửa thành $BN, CM, AH$ đồng quy

Gọi $T$ là giao $AH, DN$ và $R$ là giao $DN, BC$

Xét tam giác $ADT$ và $NHT$ có:
$\widehat{ATD}=\widehat{NTH}$ (đối đỉnh)

$\widehat{D_2}=\widehat{H_2}=\widehat{H_1}$

$\Rightarrow \triangle ADT\sim \triangle NHT$ (g.g)

$\Rightarrow \frac{AT}{DT}=\frac{NT}{HT}$

$\Rightarrow \triangle ATN\sim \triangle DTH$ (c.g.c)

$\Rightarrow \widehat{N_1}=\widehat{THD}(3)$

Mặt khác:

Vì $\triangle ADT\sim \triangle NHT$ 

$\Rightarrow \widehat{DAT}=\widehat{HNT}=\widehat{HND}$

Mà $\widehat{DAT}+\widehat{DBH}=180^0$ (do $\widehat{ADB}=\widehat{AHB}=90^0$)

$\Rightarrow \widehat{HND}=\widehat{DAT}=180^0-\widehat{DBH}=\widehat{RBD}$

Xét tam giác $RBD$ và $RNH$ có:

$\widehat{R}$ chung

$\widehat{RBD}=\widehat{HND}=\widehat{RNH}$

$\Rightarrow \triangle RBD\sim \triangle RNH$ (g.g)

$\Rightarrow \frac{RB}{RD}=\frac{RN}{RH}$

$\Rightarrow \triangle RDH\sim \triangle RBN$ (c.g.c)

$\Rightarrow \widehat{RHD}=\widehat{RNB}(4)$

Từ $(3);(4)$ suy ra:

$\widehat{N_1}+\widehat{RNB}=\widehat{THD}+\widehat{RHD}$

$\Leftrightarrow \widehat{ANB}=\widehat{AHB}=90^0$

$\Rightarrow BN\perp AC$

Tương tự $CM\perp AB$

Tam giác $ABC$ có $BN\perp AC, CM\perp AB, AH\perp BC$ nên ba đường này đồng quy (3 đường cao trong tam giác)

d. Đã làm ở phần c.

P/s: Bài toán này nếu làm bằng kiến thức lớp 9 thì khá nhẹ nhàng, nhưng dùng kiến thức lớp 8 thì mình thấy hơi dài.

 

1: Ta có: H và D đối xứng nhau qua AB

nên AB là đường trung trực của HD

Suy ra: \(AH=AD\left(1\right)\)

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: \(AH=AE\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra AD=AE

Xét ΔADE có AD=AE

nên ΔADE cân tại A

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0