K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AKHB có 

\(\widehat{AKB}=\widehat{AHB}=90^0\)

Do đó: AKHB là tứ giác nội tiếp

Xét tứ giác CKIH có 

\(\widehat{CKI}+\widehat{CHI}=180^0\)

Do đó: CKIH là tứ giác nội tiếp

a: góc AKB=góc AHB=90 độ

=>AKHB nội tiếp đường tròn đường kính AB

=>Tâm là trung điểm của AB

b: Gọi giao của AH và BK là M

ABHK là tứ giác nội tiếp

=>góc AHK=góc ABK

=>góc AHK=góc ADE

=>HK//DE

4 tháng 3 2021

mọi người giúp em với ạ em cần gấp

 

4 tháng 3 2021

.

2 tháng 5 2021

a; Xét tam giác ABC nội tiếp (O,R) có AH,BK là 2đường cao => góc AHB=góc BKA=90.

Vì K và H là 2 đỉnh liên tiếp của tứ giác ABHK 

=> tứ giác ABHK nội tiếp

b,Xét đường tròn (O,R) có góc ACB là góc nội tiếp chắn cung AB 

LẠi có góc AOB là góc ở tâm chắn cung AB 

=>sđ góc AOB=2 sđ góc ACB=2x70=140 độ

=> S quạt OAB=\(\pi\).R^2.n/360=\(\pi\).25.140/360=\(\pi\).175/18 cm2

c,

 

 

2 tháng 5 2021

c, xét tam giác ABC nội tiếp (O,R) có góc BED là góc nội tiếp chắn cung BD

Lại có tứ giác ABHK nội tiếp (cmt) nên góc BKH= góc BAH (cùng chắn cung BH)

Có góc BAD là góc nội tiếp chắn cung BD=> góc BAD=góc BED(cùng chắn cung BD)

=> góc BED=góc BKH mà 2 góc này ở vị trí đồng vị => HK song song DE

 

25 tháng 9 2018

Ai làm hộ mình ý b với

26 tháng 9 2018

Ai làm giúp mình ý b với, mai phải kiểm tra rồi, nêu cách làm cũng được

27 tháng 5 2018

a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)

Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)

(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)

b) Xét ΔAMN và ΔABC có:

\(\widehat{BAC}\)chung

\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)

Do đó ΔAMN ~ ΔABC

Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)

hay AM.AC=AN.AB

Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)

Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)

Suy ra tứ giác ANHM nội tiếp

Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)

\(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)

    \(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)

Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)

Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)

c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)

Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)

Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)

Do đó tứ giác HMCD nội tiếp

Suy ra \(\widehat{HMD}=\widehat{HCD}\)

\(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)

Nên \(\widehat{HMD}=\widehat{HMN}\)

Vậy MH là phân giác \(\widehat{NMD}\)

Mà MH vuông góc AM (gt)

Nên AM là phân giác ngoài

Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)

hay IH.AD=AH.ID

a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)

→AFAD=AHAB→AF.AB=AH.AD

Tương tự AH.AD=AE.AC→AF.AB=AE.AC

b.Ta có  :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o

→AEHF,AEDB,FHDB nội tiếp

→ˆHFE=ˆFAE=ˆHBD=ˆHFD

→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF

→HIHD=FIFD=AIAD

→IH.AD=AI.DH

20 tháng 1 2018

Bạn giải chưa ạ??

28 tháng 4 2018

có ai kg giúp mình giải bài này đi